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ABSTRACT

Generalized CMAC (GCMAC) is a type of neural network known to be fast in learning. The network may be useful in structural
engineering applications such as the identification and the control of structures. The derivatives of a trained GCMAC is relatively
poor in accuracy. Therefore to improve the accuracy, a new algorithm is proposed. It GCMAC is directly differentiated, the accuracy
of the derivative is not satisfactory. This is due to the quantization of input space and the shape of basis function used. Using
the periodicity of the predicted output by GCMAC, the derivative can be improved to the extent of having almost no error. Numerical
examples are considered to show the accuracy of the proposed algorithm.

Keywords: cerebellar model articulation controller(cmac), training, neural-networks, basis function, derivative, finite difference, hash-

ing, quantization.

1. Introduction

The cerebellar model articulation controller (CMAC)
proposed by Albus(1975) has shown promise in the field
of control engineering for the last two decades. Local
learning characteristics and fast convergence are fasci-
nating features of CMAC. CMAC has, however, inherent
problems. The output of CMAC is discontinuous due to
the quantization of the input space. To obtain a smooth
output with CMAC, input space has to be densely quan-
tized. This requires a substantial increase in memory. In
addition, the derivatives of the trained CMAC are not
obtained. The needs for continuous output with appro-
priate memory size and for the derivative of CMAC
opened the second generation of CMAC. CMAC with
spline functions enable continuous output and derivative
of CMAC. Both continuous output and derivative of
CMAC can be obtained thereafter. Spline receptive field
function is an interpolation function that is used in the cal-
culation of output at the intermediate space between quan-
tization centers. Fuzzy membership function which is
another type of interpolation function has been used by
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Junhong Nie, et al.(1993) and by U. D. Patel et al. (1995).
They called it fuzzified CMAC, or simply FCMAC.
Recently, generalized CMAC, so called GCMAC, has been
proposed by C. T. Chiang et al.(1996) and F. J. Gonzalez-
Serrano et al.(1998). The spline receptive field function is
generalized as basis function for interpolation in their
work. They showed that nonlinear smooth function can be
approximated via basis function, and the derivative of out-
put can be obtained directly by differentiating the basis
function.

Although the derivative of CMAC can be obtained via
interpolation function such as spline receptive field func-
tion, fuzzy membership function and basis function, the
accuracy of derivatives is not satisfactory. Derivatives
through the direct differentiation of basis function have
inherent errors due to quantization of input space and the
shape of basis function. Accuracy of derivative is impor-
tant for control applications. If the accuracy of derivative
of emulator CMAC is poor, learning speed of controller,
which is trained with the help of emulator CMAC,
becomes slower. Finally, the performance of on line con-
troller also becomes poor. The calculation of derivatives
with improved accuracy is performed in this study. Pro-
posed algorithm is a finite difference scheme using the
periodicity of output of GCMAC. GCMAC is used for
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function approximation and the derivative of approxi-
mated function is calculated by the proposed differen-
tiation algorithm applied to trained GCMAC.

2. CMAC Structure

CMAC is an associate memory mapping structure imi-
tating human cerebellum. For a given input state, a group of
addresses indicating associated memory locations is
invoked. The weights stored in the activated memory are
added to give the output of CMAC. Therefore, the process of
CMAC is divided into two mapping functions. One is mem-
ory-addressing mapping. The other is sum-up mapping.

Consider the memory-addressing mapping. To invoke
some associated addresses, input space must be quantized
into a finite number of regions. Two input variables, x, and
x,, may be quantized as shown in Fig. 1. Quantization
intervals are called blocks, and quantized regions such as
A, A, ...,and B, B,,, ..., are called hypercubes . First,
input space is quantized as shown in Fig. 1(a). Then, by
shifting quantization mesh toward s, a second method of
quantization can be performed as shown in Fig. 1(b). With
these methods, several number of quantization may be
achieved. The number of quantization is called general-
ization width, or number of elements. This hashing algo-
rithm can reduce the required size of memory. For N inputs,
each taking €2 different values, £2¥ memory locations are
required. Whereas, if the generalization width is N, the size
is reduced to Ng(.(MVg)N in a hashing algorithm.

In the case of two input variables shown in Fig. 1, hyper-
cubes A and B,, are invoked for the state marked with
symbol . And generally, the addresses invoked by state
X = I:xl Xy ... x,]Tcan be expressed as

n i-1
a; = ceil(xl ;S"’1)+ Z|:ceil(x] ;sk’]) [+ 1)}+ak,o
1 1
i=2

j=1

k=1,2,..,N, (1)

where

ceil(y) : the least integer greater than or equal to y,

s,; - shifting value of i-th variable on k-th element for
hash mapping,

g; : quantization interval of i-th variable,

b; : number of blocks covering entire region of j-th vari-
able,

a, , : starting position of address for k-th element and can
be expressed as

hypercube A

[ 4 X, By | B | B B
Anl Anl Anl i 2 1 12 13 14

AZI A22 A23 A24 -

Ayl As gA;; Az, By B3? By | Bas
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(a) Method ! (b) Method 2

Fig. 1. Quantization scheme for hash mapping

@y ot [JBi+ 1), (k22)

i=1

1 (k=1)

),

n : dimensionality of input space.

After the activation of associated addresses, CMAC pro-
duces its output by summing up the weights stored in the
addresses using

N,

u= "y Wiay) 3)

k=1

where N, is the total number of hypercubes(weights)
which can be expressed as N,-IT/_,(b;+1), a, equals to
one only at the activated, equals to zero at the others, and
W is the weight. The conventional CMAC proposed by
Albus? has the form given in Eq. (3) for output calculation.
The weights of addresses invoked are simply added to pro-
duce output u. The inherent problem is that output is dis-
continuous and it cannot be differentiated because weights
are constants in hypercubes.

Research efforts have generalized CMAC structure to
overcome these problems. The most generalized form has
been reported by C. T. Chiang er al'?, which is similar to
the conventional CMAC except for the output calculation.
The Generalized CMAC, the so called GCMAC, gives
output in the following form

Ny
U=y OUx)Way) @
k=1
where
@ (x) = []oulx) (5)
i=1
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In Eq. (5), ¢,{(x;) is called basis function and can have
many types. In Chiang’s paper, Gaussian function is used
for basis function which can be written as

x— e iV
o) = exp {“E ] ©)
ki
where (1, and o, are the mean and standard deviation of
x,, respectively, in the quantization interval and can be
expressed as

By = |:2~ceil(m)—1}x%’-+sk’i @)

q

Op,i = €q; ®

The output of GCMAC has two fascinating features:
continuity and differentiability. Because the basis function
acts as an interpolator, output of GCMAC is continuous.
In addition, derivative of output can be obtained by
directly differentiating the basis function. To train
GCMAC, weights are updated through the addition of
incremental value as follows:

AW(ag) = 3= 10)P(x) ©)
g

where 1} and f are learning rate and target function to be
learned respectively.

3. Sensitivity Property of GCMAC
Although GCMAC can have continuous differentiable

output, the accuracy of the derivative is not satisfactory.
Derivative errors are mainly caused by the quantization of
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input and by the shape of basis function. If Gaussian func-
tion is used for basis, output of GCMAC have the form
shown in Fig. 2(a).

Because the shape of output of GCMAC smoothly fluc-
tuates as shown in Fig. 2(a), errors in the derivatives are
amplified as shown in Fig. 2(b).

The shape of output of GCMAC reveals the periodicity
of errors. Using this periodicity, error in the derivative can
be reduced. To calculate the derivative of GCMAC, the
following equation has been used until now.

du _ 0P
7%= X35 V@ (10)
where
o0, 090, .
= T oyt an
i lj=1
U=

However, a finite difference scheme in the following
equation is used for the derivative of GCMAC in this
study:

du _u(x,+Ap/2)—u(x,— Ap;/2)

ox; Ap; (12)
where

N
u(x;+8) = 2 @ (X)W(ay) (13)

k=1

—  target function(f) — Jfiox
— GCMAC(u) ulox
X x

(a) Target function(f) vs. GCMAC(u)
Fig. 2. Error in GCMAC and the derivative

(b) Derivatives of f and u
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>

x10 (14)

x+8 X, ... x,

=[x xp .. Xy

p;: period of GCMAC along x,

The efficiency of finite difference scheme for derivative
of GCMAC is shown in Fig. 3. At x_, derivatives by finite
difference are closer to the exact derivatives than those by
direct differentiation. Since the period(p,) is the direc-
tional distance along the x; direction between the centers of
the closest basis function in all elements, if the difference
Ax; of the finite difference calculation equals to this period,
the error in the derivative is minimized.

4. Numerical Examples

Example 1 : Single Input Single Output(SISO) case

Single input single output function given by Eq. (15) is
learned by GCMAC. The Gaussian function is used as basis
with ¢=0.21. Quantization interval is 0.5(rad). The number of
elements is 4. Therefore, 4><{ceil(27t/0.5)+1}2 =56
weights are used for the output of GCMAC. Shifting
matrix in Eq. (16) is used for the hash mapping of

x (rad)
(a) GCMAC vs. f
Fig. 4. Result of learning of fby GCMAC (SISO case)

Error

addresses. After learning, outputs of GCMAC are almost
exactly the same as function f given by

f= exp[—(x—;—t)z] cos(%x), 0<x<2m

S=[s,1=[0 r/4 2r/4 3r/4)
=[0 0.125 025 0375]"

(15)

(16)

Fig. 4(a) shows the function to be approximated and the
predicted output by the trained GMAC. The prediction
error between f and GCMAC is shown in Fig. 4(b). As
expected, error shows periodic characteristics. Fig. 5
shows the windowed Fourier transform of the error from
2.0 rad to 3.0 rad. The first dominant peak at 8.0(rad!)
shows that the error has periodic signal with period 1/8
(rad) which exactly coincide with the quantization inter-
val(0.5) divided by the number of elements along the x-
direction(4). Therefore 0.125 is used as the difference
value for the derivative of GCMAC in the finite difference
calculation.

In Fig. 6, analytic differentiation(AD) shows fluctuating

1.0EA1 — ™

L L T
8.0E-2 4
R
T 6.0E2 .
.
£ . i
£ 40E2
2.0E-2 4
0.0E+0
0 5 10 15 20 25 30
rad’
Fig. 5. Fourier transform of the error.
1.0E-2 T L
5.0E-3 F 1
0.0E+0
-5.0E-3 T b
1
_10E_2 N e, 1 i A
0.0 2.0 4.0 6.0
x (rad)
(b) Error (f-GCMAC)
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error, but derivative using finite difference(FD) is almost
the same as the exact derivative(ED). When the finite dif-
ference scheme is used for the interval x,, <x<x_; +Ax,
and x-Ax<x<x_, where the finite difference cannot
be applied, the finite difference scheme is slightly mod-
ified as given by the following equations.

ou _ Au _ u(xXi+Apy/2) —u(X; min)

du;" Ax;  X+Ap/2—Ximin
if xi’minsxisxi,min+Axi (17)
@:M_u(xi,max)_u(xi—Api/Z)
Ou;m Ax; Xy g — (—Apy/2)
lf xi’min_Axinisxi,max (18)

Possible use of another two basis functions are exploited
for the learning of function f. One is linear interpolation
function and the other is sinusoidal function which are

0.0 2.0 4.0 6.0
x(rad)

(a) Analytic differentiation

Fig. 6. Analytic vs. finite difference differentiation (Gaussian basis)

2.0 T T

dffox

l. i 1 M 1

0.0 2.0 4.0 6.0
x(rad)

(a) Analytic differentiation

Fig. 7. Analytic vs. finite difference differentiation (linear basis)
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expressed as

3= 15 Me 19

q)k(‘xl) —q/z ( )
2 —U,

O(x;) = cos (g : x’qig‘”) (20

Fig. 7 shows derivative of f when linear basis function is
used for GCMAC learning. As expected, piecewise con-
tinuous derivative is obtained because the derivative of lin-
ear basis function is piecewisely continuous. Fig. 8 shows
the case when sinusoidal basis function is used. It shows
that the finite difference scheme is excellent for the deriv-
ative calculation of GCMAC.

To find the effect of the finite difference value on the
accuracy of derivatives, difference Ax is varied from 10%
to 300 % of period of GCMAC, p. Figure 9 shows errors
versus the variation of Ax. The parameter o in Fig. 9 is
defined as Ax/p. ASE is defined as accumulated square

A 1 " A _ 1

0.0 2.0 4.0 6.0
x(rad)
(b) Finite difference

1 1 - i

0.0 2.0 4.0 6.0

x(rad)
(b) Finite difference
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df/ox

1 e, 1 i 1 § . )

0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
x(rad) x(rad)
{(a) Analytic differentiation (b) Finite difference '

Fig. 8. Analytic vs. finite difference differentiation (sinusoidal basis)

1.0E+2 ¢
1.0E+1
8
< 1.0E+0
1.0E-1
1.0E-2 i i
0.0 1.0 2.0 3.0
o
(a) Gaussian basis function
1.0E+1 T - 1.0E+2 pr—r—r—r1— T -
: FD FD
. AD 1 teEsa 3
2 PO UPRRURRRRRR PR Ky E
Ll E vy [
© 10E+0 ~1.0E+0 3
1.0E-1
. . - | i Lo 0 1.0E-2 il PN T P
M 1.0 2.0 3.0 0.0 1.0 20 3.0
o o
{b) Linear basis function (¢) Sinusoidal basis function
Fig. 9. Effect of finite difference on ASE.
errors for every 0.01 rad. Example 2 : Multi Input Single Output(MISO) case
Error of the derivatives using finite difference(FD) is
always under that of direct differentiation(AD) until o is GCMAC learns the multi-input single-output functior

less than 3. ASE has local minimum at o=1 where finite  given by Eq. (21). Fig. 10 shows the function g and the

difference equals to the period p(=0.125). ASE has local  output of GCMAC after learning.

minimum also at o=2, which means that error of GCMAC

shows periodic output also 2p. As a goes to zero, ASE 8(x1.x5) = cosx; - sinx,, 0<x;,x,<3(rad)
approaches to that of analytic differentiation, since difference

21

equation becomes analytic differentiation equation. Quantization interval is 0.5rad(g,, g,) for both x, and x,
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(a) Function to be learned (b) Output of GCMAC
Fig. 10. Function g and output of GCMAC

1.0 — — T 1.0 T T

0.5
£
R 0.0
-0.5
!
1.0 -~ L - -1.0 L L ~
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
x; (rad) X2 (rad)
(a) Analytic differentiation (b) Finite difference

Tig. 11. Analytic vs. finite difference differentiation (linear basis, x,=1/3)

1.0 Ll R T o 1-0 L] T
ED

. 0.5

0.0

-0.5

4
1.0 " . . I " 1.0 1 1 .
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
x; (rad) x3(rad)
(a) Analytic differentiation (b) Finite difference

Tig. 12. Analytic vs. finite difference differentiation (Gaussian basis, x,=1t/3)

6(N,) elements are used for hash mapping. The shifting where mod(d,e) is the remainder of d divided by e, and-

natrix S(16x2) is given by fix(m) is the least integer less than or equal to m. The number

of weights used is {ceil(3/q;)+1}x{ceil(3/g;)+1}XN,,

: : or 784. Three basis functions are all used respectively.

S=[s.1= {%Xmod(ku 1,4) 6{szfix{(k— 1)/41| (22)  Derivatives of GCMAC using basis functions are shown
: : in Fig. 11~13.

Discontinuous errors are shown in analytic differenti-
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o

ED

ok

_1 ‘0 1 L _1 I0 " 1 " 1
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
xz(rad) x;(rad)
(a) Analytic differentiation (b) Finite difference
Fig. 13. Analytic vs. finite difference differentiation (sinusoidal basis, x,=n/3)
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(a) Linear basis function
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(b) Gaussian basis function
Fig. 14. Effect of finite difference on ASE (x,=n/3)

ation, but almost exact derivative can be obtained by the
proposed finite difference scheme.

For Gaussian basis and sinusoidal basis function ana-
Iytic derivatives have fluctuating errors, but derivatives by
the finite difference scheme are almost the same as the
exact ones. Effect of difference, Ax,, on the accuracy of
derivative by finite difference scheme is shown in Fig. 14.
When Ax, equals to p,(01.25 rad) and 2p, (0.25), ASE has
its local minimum.

(c) Sinusoidal basis function

5. Conclusions

To improve the accuracy of the derivative of a trainec
GCMAC, a finite difference scheme with the finite dif-
ference equal to the period of output of the trainec
GCMAC is proposed. The period is the quantization inter-
val divided by the generalization width along the directior
toward which the derivative is calculated, or the distance
between the centers of the nearest basis function in all ele-
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ments. The error in the derivative also has the local min-
imum also at twice the period because the periodic nature
appears at twice the period. Linear and sinusoidal basis
function are exploited for training of GCMAC. Test results
show that not only the Gaussian function but linear and
sinusoidal basis function are also applicable to the pro-
posed method.
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