• Title/Summary/Keyword: Shamir and Adleman (RSA)

Search Result 14, Processing Time 0.024 seconds

Encryption of Biometrics data for Security Improvement in the User Authentication System (사용자 인증 시스템의 보안성 향상을 위한 생체인식 데이터의 암호화)

  • Park, Woo-Geun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.31-39
    • /
    • 2005
  • This paper presented new biometrics data transfer model, and use MD5 (Message Digest5) and RSA (Ron Rivest, Adi Shamir, Len Adleman) algorithm to improve biometrics data's security. So, did so that can run user authentication more safely. That is, do so that may input fingerprint among biometrics through client, and transmit processed fingerprint to server. When fingerprint information is transmitted, it uses MD5 algorithm to solve problem that get seized unlawful living body information from outside and information does Digest. And did to pass through process that transmit again this by RSA method. Also, experimented general text data and living body data that is not encoded, transmission speed and security of living body data that encoding and transmit each comparison. By running user authentication through such improved method, is expected to be applied in several. fields by method to simplify certification procedure and is little more correct and stable.

  • PDF

RSA-type Algebra Structures

  • Tran, Long D.;Tran, Thu D.;Choi, Deokjai;Nguyen, Thuc D.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2835-2850
    • /
    • 2016
  • RSA is a public key cryptosystem that is currently the most popularly used in information security. Development of RSA variants has attracted many researchers since its introduction in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman. In this paper, we propose an algebraic structure for RSA and show that the proposed structure covers all known RSA variants. The usefulness of the proposed structure is then proved by showing that, following the structure we can construct a RSA variant based on the Bergman ring. We compare the original RSA and its variants from the point of view of factoring the modulus to determine why the original RSA is widely used than its variants.

Encrytion Method Based on Chaos Technique (카오스 이론을 이용한 암호화 기법)

  • 정성용;김태식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.45-47
    • /
    • 1998
  • 본 연구에서는 로버트 메이의 논리차이방정식(Logistic difference equation)을 이용하여 ASCII코드로 만들어진 문서를 암호화 할 수 있도록 하는 카오스 LCC(Logistic Chaos Cryptosystem)을 제안한다. 카오스를 이용한 암호화 기법은 기존의 암호화 기법으로 알려진 DES(Data Encrypion Standard)나 RSA(Rivest,Shamir,Adleman)등과는 비교되는 기법으로 초기 조건에 민감한 카오스의 특징을 이용하였다. 실험결과 제안된 LCC 기법을 통해 암호문은 카오스적으로 표현되었으며, 원문과 암호문 사이에 어떠한 관련성도 찾아 볼수 없었다. 향후 안전성이나 처리속도에 대한 검증과 표준화 문제 및 멀티미디어 자료등에 대한 암호화 기법을 계속 연구해야 할 것이다.

  • PDF

"Q-Bone", a 3rd Generation Blockchain Platform with Enhanced Security and Flexibility (보안성 및 범용성이 강화된 3세대 블록체인 플랫폼 "큐본")

  • Im, Noh-Gan;Lee, Yo-Han;Cho, Ji-Yeon;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.791-796
    • /
    • 2020
  • In this paper, "Q-Bone", a 3rd generation blockchain platform with enhanced security and flexibility, was developed. As a 3rd generation blockchain platform, it exploits BP (block producer) to increase processing speed. It has many advantages as follows. It improves both security and speed by mixing RSA (Rivest-Shamir-Adleman) and AES (advanced encryption standard). It improves flexibility by exploiting gateway to convert between apps and blockchain with different programming language. It increases processing speed by combining whole transactions into one block and distribute it when too many transactions occur. It improves search speed by inserting sequence hash into transaction data. It was implemented and applied to pet communication service and academy-instructor-student matching service, and it was verified to work correctly and effectively. Its processing speed is 3,357 transactions/second, which shows excellent performance.

An IPSO-KELM based malicious behaviour detection and SHA256-RSA based secure data transmission in the cloud paradigm

  • Ponnuviji, N.P.;Prem, M. Vigilson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4011-4027
    • /
    • 2021
  • Cloud Computing has emerged as an extensively used technology not only in the IT sector but almost in all sectors. As the nature of the cloud is distributed and dynamic, the jeopardies present in the current implementations of virtualization, numerous security threats and attacks have been reported. Considering the potent architecture and the system complexity, it is indispensable to adopt fundamentals. This paper proposes a secure authentication and data sharing scheme for providing security to the cloud data. An efficient IPSO-KELM is proposed for detecting the malicious behaviour of the user. Initially, the proposed method starts with the authentication phase of the data sender. After authentication, the sender sends the data to the cloud, and the IPSO-KELM identifies if the received data from the sender is an attacked one or normal data i.e. the algorithm identifies if the data is received from a malicious sender or authenticated sender. If the data received from the sender is identified to be normal data, then the data is securely shared with the data receiver using SHA256-RSA algorithm. The upshot of the proposed method are scrutinized by identifying the dissimilarities with the other existing techniques to confirm that the proposed IPSO-KELM and SHA256-RSA works well for malicious user detection and secure data sharing in the cloud.

Elliptic Curve Cryptography Algorithms for IC Card (IC 카드용 타원곡선 암호 알고리즘)

  • 이택희;서창호;김영철;이태훈;윤보현
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • This paper describes implementations and test results of Elliptic Curve Cryptography (ECC) and Elliptic Curve KCDSA(ECKCDSA) algorithms based on Java card. 163-Bit ECC guarantees as secure as 1024-Bit Rivest-Shamir-Adleman (RSA) public key algorithm, which has been frequently used until now. According to our test results, 163-bit ECC processing time is about five times fast compared with 1024-bit RSA and amount of resource usages of ECC is smaller than RSA. Therefore, ECC is more appropriate for use on secure devices such as smart cards and wireless devices with constrained computational power consumption and small memory resources.

Utilizing Block chain in the Internet of Things for an Effective Security Sharing Scheme

  • Sathish C;Yesubai Rubavathi, C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1600-1619
    • /
    • 2023
  • Organizations and other institutions have recently started using cloud service providers to store and share information in light of the Internet of Things (IoT). The major issues with this storage are preventing unauthorized access and data theft from outside parties. The Block chain based Security Sharing scheme with Data Access Control (BSSDAC) was implemented to improve access control and secure data transaction operations. The goal of this research is to strengthen Data Access Control (DAC) and security in IoT applications. To improve the security of personal data, cypher text-Policy Attribute-Based Encryption (CP-ABE) can be developed. The Aquila Optimization Algorithm (AOA) generates keys in the CP-ABE. DAC based on a block chain can be created to maintain the owner's security. The block chain based CP-ABE was developed to maintain secures data storage to sharing. With block chain technology, the data owner is enhancing data security and access management. Finally, a block chain-based solution can be used to secure data and restrict who has access to it. Performance of the suggested method is evaluated after it has been implemented in MATLAB. To compare the proposed method with current practices, Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) are both used.

The Novel Efficient Dual-field FIPS Modular Multiplication

  • Zhang, Tingting;Zhu, Junru;Liu, Yang;Chen, Fulong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.738-756
    • /
    • 2020
  • The modular multiplication is the key module of public-key cryptosystems such as RSA (Rivest-Shamir-Adleman) and ECC (Elliptic Curve Cryptography). However, the efficiency of the modular multiplication, especially the modular square, is very low. In order to reduce their operation cycles and power consumption, and improve the efficiency of the public-key cryptosystems, a dual-field efficient FIPS (Finely Integrated Product Scanning) modular multiplication algorithm is proposed. The algorithm makes a full use of the correlation of the data in the case of equal operands so as to avoid some redundant operations. The experimental results show that the operation speed of the modular square is increased by 23.8% compared to the traditional algorithm after the multiplication and addition operations are reduced about (s2 - s) / 2, and the read operations are reduced about s2 - s, where s = n / 32 for n-bit operands. In addition, since the algorithm supports the length scalable and dual-field modular multiplication, distinct applications focused on performance or cost could be satisfied by adjusting the relevant parameters.

Practical Silicon-Surface-Protection Method using Metal Layer

  • Yi, Kyungsuk;Park, Minsu;Kim, Seungjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.470-480
    • /
    • 2016
  • The reversal of a silicon chip to find out its security structure is common and possible at the present time. Thanks to reversing, it is possible to use a probing attack to obtain useful information such as personal information or a cryptographic key. For this reason, security-related blocks such as DES (Data Encryption Standard), AES (Advanced Encryption Standard), and RSA (Rivest Shamir Adleman) engines should be located in the lower layer of the chip to guard against a probing attack; in this regard, the addition of a silicon-surface-protection layer onto the chip surface is a crucial protective measure. But, for manufacturers, the implementation of an additional silicon layer is burdensome, because the addition of just one layer to a chip significantly increases the overall production cost; furthermore, the chip size is increased due to the bulk of the secure logic part and routing area of the silicon protection layer. To resolve this issue, this paper proposes a practical silicon-surface-protection method using a metal layer that increases the security level of the chip while minimizing its size and cost. The proposed method uses a shift register for the alternation and variation of the metal-layer data, and the inter-connection area is removed to minimize the size and cost of the chip in a more extensive manner than related methods.

Novel Method for DNA-Based Elliptic Curve Cryptography for IoT Devices

  • Tiwari, Harsh Durga;Kim, Jae Hyung
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.396-409
    • /
    • 2018
  • Elliptic curve cryptography (ECC) can achieve relatively good security with a smaller key length, making it suitable for Internet of Things (IoT) devices. DNA-based encryption has also been proven to have good security. To develop a more secure and stable cryptography technique, we propose a new hybrid DNA-encoded ECC scheme that provides multilevel security. The DNA sequence is selected, and using a sorting algorithm, a unique set of nucleotide groups is assigned. These are directly converted to binary sequence and then encrypted using the ECC; thus giving double-fold security. Using several examples, this paper shows how this complete method can be realized on IoT devices. To verify the performance, we implement the complete system on the embedded platform of a Raspberry Pi 3 board, and utilize an active sensor data input to calculate the time and energy required for different data vector sizes. Connectivity and resilience analysis prove that DNA-mapped ECC can provide better security compared to ECC alone. The proposed method shows good potential for upcoming IoT technologies that require a smaller but effective security system.