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Abstract 
 

The modular multiplication is the key module of public-key cryptosystems such as RSA 
(Rivest-Shamir-Adleman) and ECC (Elliptic Curve Cryptography). However, the efficiency 
of the modular multiplication, especially the modular square, is very low. In order to reduce 
their operation cycles and power consumption, and improve the efficiency of the public-key 
cryptosystems, a dual-field efficient FIPS (Finely Integrated Product Scanning) modular 
multiplication algorithm is proposed. The algorithm makes a full use of the correlation of the 
data in the case of equal operands so as to avoid some redundant operations. The experimental 
results show that the operation speed of the modular square is increased by 23.8% compared to 
the traditional algorithm after the multiplication and addition operations are reduced about 

2( ) / 2s s− , and the read operations are reduced about 2s s− , where 32s = n /  for n-bit 
operands. In addition, since the algorithm supports the length scalable and dual-field modular 
multiplication, distinct applications focused on performance or cost could be satisfied by 
adjusting the relevant parameters. 
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1. Introduction 

Cryptography provides a strong support for data security with encryption and decryption. In 
particular, the public key cryptography represented by RSA (Rivest-Shamir-Adleman) and 
ECC (Elliptic Curve Cryptography) is the core component of PKI/CA system. It solves the 
critical issues such as key distribution and identity recognition of symmetric cryptography, 
and ensures data confidentiality, integrity and authenticity of both parties in the e-commerce, 
e-government, e-bank and social networks applications [1]. Compared with RSA, ECC has a 
shorter key length at the same security strength, and has multiple advantages in a variety of 
wireless devices, smart cards and other resource-constrained device applications. 

In our work, we will study on the design of a kind of efficient dual-field FIPS (Finely 
Integrated Product Scanning) modular multiplication which supports both RSA and SM2 
cryptosystems in prime and binary fields. It takes full account of the modular multiplication of 
the public key cryptography algorithm under the condition of equal operands, reduces the 
multiplication, addition and reading operations in the case, improves the operation efficiency 
of modular multiplication, decreases the power consumption, and provides a unified dual-field 
modular multiplication algorithm for resource constrained devices to implement both RSA 
and SM2 algorithms. Moreover, by reorganizing the operation flow of dual-field modular 
square and optimizing its logic structure, with pipeline architecture which takes small area and 
low power consumption as the focus, using dual-field multiplier, dual-field adder and modular 
multiplication controller to control the data operation process in the key data path, an efficient 
modular exponentiation circuit is designed. 

2. Related Works 
RSA and ECC algorithms involve a large number of complex operations. Implemented 

using software alone, their efficiency is very low. In order to improve the efficiency and 
security of the public key cryptography algorithm, usually using FPGA (Field 
－Programmable Gate Array) or VLSI (Very Large Scale Integration) to implement the key 
operations involved in the algorithm [2], the cryptographic algorithm is integrated into the 
circuit design of related cryptographic coprocessor, cipher chip and so on. It focuses on 
complex operations such as modular multiplication, modular exponentiation and modular 
inversion. 

In [3] and [4], the remainder system is used to improve the parallelism of modular 
multiplication and modular exponentiation, and the operation is accelerated by the efficient 
arithmetic unit architecture. Using the large number subtraction to optimize modular 
multiplication [6, 7], although the internal loop has been increased for one time, the period of 
modular multiplication and modular exponentiation is reduced. Li [8] and Chen [9] have made 
effective improvements in the design and implementation of dual finite field modular 
multiplication. Kadar [10] and Qi [11] use reversible logic gates to design modular 
multiplication and modular inverse circuits of cryptographic algorithms to prevent the loss of 
energy during computation. However, the security chip supporting both RSA and SM2 
algorithms requires higher resource consumption. In recent years, with the development of 
chip manufacturing technology, hardware design of cryptographic systems emphasizes high 
speed and ignores the area, power and resource consumption. Therefore, more efficient 
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implementations are needed to overcome the environmental requirements in the application 
process. 

Due to the efficiency and security of the algorithm, most of the key operations of RSA and 
ECC, especially the high complexity multiplication, are implemented in hardware. Using a 
simple addition, multiplication and shift operation to solve the tedious division problems in 
traditional algorithms, the Montgomery modular multiplication algorithm [12] is suitable for 
hardware implementation. In the recent study, the dependency graph and multiple process 
elements (PEs) are the research hotspots in the Montgomery modular multiplication algorithm. 
According to the algorithm, Lin et al [5, 13, 14] proposed a hardware architecture consisting of 
multiple PEs to work in parallel for reducing the delay and the memory bandwidth 
requirement, and achieving higher throughput. Renardy et al [15] designed an iterative 
modular architecture on FPGA and achieved better 2AT  (area delay). A novel iterative 
architecture [16] for the prime field ( )GF p  is proposed lately by Morales-Sandoval to reduce 
the area. However, the above studies only consider the ( )GF p  field or the binary field 

(2 )mGF  in a single field situation. Of the design of less dual-field models, Savas [17], Zheng 
[18] and Liao [19] et al have done much work on the design of modular multiplication 
hardware with significant contributions to scalability, speed, and the RSA/ECC coprocessors. 

In general, on the one hand, the above research on the Montgomery modular algorithm is 
less supportive for the dual-field. On the other hand, these works focus on the pursuit of speed, 
and in terms of area, power consumption and other aspects, they are not suitable for the 
applications in wireless devices, smart cards and other resource-constrained devices. In order 
to meet the parameter requirements of resource-constrained devices, we re-design the 
Montgomery modular multiplication algorithm, and optimize the modular square based on the 
characteristics of the FIPS so as to increase the speed of the modular square, and reduce the 
operations of the operand access, multiplication and addition. Furthermore, the improved 
algorithm is extended to the (2 )mGF  field to support both the RSA and ECC cryptosystems, 
and the corresponding circuits are implemented on FPGA. 

3. FIPS Algorithm Optimization 
In the RSA cryptosystem, the modular exponentiation algorithm is implemented by the 

repeated modular multiplication. The modular multiplication is also the basic operation of the 
SM2 crytosystem. The modular multiplication is the lowest level operation in the encryption 
and decryption algorithm, and its performance determines the overall speed and efficiency. In 
the implementation of modular multiplication, Blakley [20], Barrett [21], Montgomery [12] 
and other algorithms are commonly used. Modular multiplication plays an important role in 
the basic operations in RSA and SM2. The probability of modular square operations is close to 
50%. However, the computing speed of modular square is limited by modular multiplication. 
It is necessary to reduce the cycle of modular square operation so as to improve the efficiency 
of encryption and decryption. 

3.1 Basic FIPS Algorithm 

Through the analysis of different modular multiplication algorithms, the Montgomery 
modular multiplication algorithm is more suitable for hardware design, and the highest 
efficiency can be achieved. As a kind of efficient implementation, its FIPS modular 
multiplication algorithm is described as shown in Algorithm 1. 
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Algorithm 1. Basic FIPS modular multiplication algorithm 

Input: '
0, , ,N A B n  

Output: 1 modM A B R N−← × ×  
1. for i = 0 to s-1 

2.     
1 1

0 0

i i

j i j j i j
j j

S S a b m n
− −

− −
= =

+← +∑ ∑ ; 

3.     0iS S a b← + ; 

4.     0 mod'
im Sn W← ; 

5.     0iS S m n← + ; 

6.     /S S W← ; 
7. end for 
8. for i = s to 2s-1 

9.      
1 1

1 1

s s

j i j j i j
j i s j i s

S S a b m n
− −

− −
= − + = − +

+ +← ∑ ∑  ; 

10.    modi sm S W− ← ; 

11.    /S S W← ; 
12. end for 
13. modsm S W← ; 

14. if M N≥  then 
15.     M M N← − ; 
16. endif 
17. return M; 

 

It can be seen that the FIPS modular multiplication algorithm based on product scanning 
mainly consists of two loops for calculating respectively the most s significant bits and least s 
significant bits of the final result. Taking the 6 6×  word operands A and B for example, the 
calculation process of the FIPS modular multiplication algorithm is shown in Fig. 1. The red 
box shows i from 0 to 1,  that is, im  is computed from the right to the left by the product 
scanning mode. The result im  of the current column i is used to calculate the operations that 
involve the ith row afterwards, as shown in the black solid line arrow. The low 6 bit im  is 
replaced by a high 6 bit im  update after the operation is completed. 

a5 a1 a0

a0b0a1b0a5b0

a4 a3 a2

a4b0 a2b0a3b0

b5 b1 b0b4 b3 b2

a0b1a1b1a5b1 a4b1 a2b1a3b1

a0b2a1b2a5b2 a4b2 a2b2a3b2

a0b3a1b3a5b3 a4b3 a2b3a3b3

a0b4a1b4a5b4 a4b4 a2b4a3b4

a0b5a1b5a5b5 a4b5 a2b5a3b5

m0

m1

m2

m3

m4

m5

m0m1m2m3m4m5  
Fig. 1. FIPS Modular Multiplication 
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3.2 Optimized FIPS Algorithm 

Assumed that only multiplication operations are considered, when A B≠ , it only needs to 
simply accumulate the partial products and takes 2s  word-based modular multiplication 
operations, as shown in Algorithm 2. 

 

Algorithm 2. Optimized FIPS modular multiplication algorithm 
Input: 1 1 0 2 1 1 0 2( ,..., , ) , ( ,..., , )s sA a a a B b b b− −= =  

Output: 2 1 1 0 2( ,..., , )sT t t t A B−= ← ×  
1. for i = 0 to s-1 
2.     0C ← ; 
3.     for j = 0 to s-1 
4.         ( , ) i j j iC S t a b C+← + + ; 

5.         i jt S+ ← ; 

6.     end for 
7.     i st S+ ← ; 

8. end for 
9. return T; 

 

When A B= , the accumulated operations on the partial product can be simplified, as shown 
in Algorithm 3. Through the 2 times accumulation of j ia b  in the original algorithm, the 

calculation flow can be optimized, and ultimately, it only takes 2( ) 2s s /+  word-based 
multiplication operations. As a result, the computation of A B=  compared with A B≠  
decreases 2( ) 2s s /+  multiplication operations. 

 

Algorithm 3. FIPS modular square algorithm 
Input: 1 1 0 2( ,..., , )sA a a a−=  

Output: 2 1 1 0 2( ,..., , )sT t t t A A−= ← ×  
1. for i = 0 to s-1 
2.     2

2( , ) i iC S t a← + ; 
3.     for j = i+1 to s-1 
4.         ( , ) i j j iC S t a a C+← + + ; 

5.         i jt S+ ← ; 

6.     end for 
7.     i st S+ ← ; 
8. end for 
9. return T; 

 

With the modular square optimization, as shown in Fig. 1, the FIPS modular multiplication 
algorithm can be optimized. Since the partial product in the grey is symmetric to the current 
column, when accumulating the grey partial product, the symmetric partial product can be 
accumulated ahead of time, i.e., when A B= , j i- j i- j ia b = a b . The j i- ja b  accumulation of the 
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previous and posterior s columns can be written as i
j i- jj=0

a b∑  and s-1
j i- jj=i-s+1

a b∑  

respectively. i
j i- jj=0

a b∑   can be expanded as 

0 1 1 0 0 1

2 0 1 1 0 2 0 2 1 1

3 0 2 1 1 2 0 3 0 3 1

2                                                                          1
2                                                     2

2 2

a b a b a b i
a b a b a b a b a b i
a b a b a b a b a b a

+ = =
+ + = + =
+ + + = + 2

4 0 3 1 2 2 1 3 0 4 0 4 1 3 2 2

5 0 4 1 3 2 2 3 1 4 0 5 0 5 1 4 2 3

                                        3
2 2                    4

2 2 2        5

b i
a b a b a b a b a b a b a b a b i
a b a b a b a b a b a b a b a b a b i



 =
 + + + + = + + =
 + + + + + = + + =

 

(1) 

The following conclusions can be drawn 
/2

-0
-0 /2-1

- /2 /20

2                    %2 1

2     %2 0 & 0

i
j i ji j

j i jj i
j i j i ij

a b i
a b

a b a b i i

=

=

=

 == 
+ = ≠

∑
∑

∑
 (2) 

Similarly, for s-1
j i- jj=i-s+1

a b∑ , for the ith column with parity difference, there is a j i j= −  in 

the ith even columns, and the partial product has only one, e.g., /2 /2a i ib . Therefore, the ith 
column is symmetric relative to the partial product, and the cumulative form is somewhat 
different because the difference of parity in the ith column. For [1,2 2]i s∈ − , by this way, the 
computing of j i- ja b  can be reduced by nearly 50%. Moreover, in logic circuits, 2 j i- ja b  can be 
generated by only one left shift of j i- ja b . 

4. Efficient Dual-field FIPS Modular Multiplication Algorithm 

4.1 Algorithm improvement 
Through the FIPS modular multiplication algorithm principle and operation characteristics 

analysis, we can see, for the logic optimization of FIPS modular multiplication algorithm, 
measures need to be taken in the critical computing process, as shown in Fig. 2. In addition, a 
dual-field modular multiplication unit that supports both the prime field ( )GF p  and the 
binary field (2 )mGF  is needed. Therefore, the efficient dual-field FIPS algorithm is improved 
on the basis of modular multiplication, where field is used to control the selection of operation 
fields, and ?0 :1equal A B← =  is used to control the selection of modular multiplication 
operations including modular multiplication or modular square. 

equal=0?

N

N

N

Next loop

Loop

Y

Y

Y

Y
j<i-j ? (v2,v1,v0)W←(v2,v1,v0)W+mjni-j+2ajbi-j

j=i-j ? (v2,v1,v0)W←(v2,v1,v0)W+mjni-j+ajbi-j

j>i-j ? (v2,v1,v0)W←(v2,v1,v0)W+mjni-j

(v2,v1,v0)W←(v2,v1,v0)W+mjni-j+ajbi-j

 
Fig. 2. Critical Computation Process 
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The improved FIPS modular multiplication algorithm is shown in Algorithm 4. 
 

Algorithm 4. Efficient Dual-field FIPS modular multiplication algorithm 
Input: N, A, B, n0

’ , field, equal 
Output: 1 modM A B R N−← × ×  
1. for i = 0 to s-1 
2.     for j = 0 to i-1 
3.        Calculate in accordance with key processes in Fig. 2; 
4.     end for 
5.     if i = 0 | equal = 0 then 
6.         2 1 0 2 1 0 0( , , ) ( , , )W W iv v v v v v a b← + ; 
7.     endif 
8.     0 0 mod'

im v n W←  

9.     2 1 0 2 1 0 0( , , ) ( , , )W W iv v v v v v m n← + ; 

10.    2 1 0 2 1( , , ) (0, , )W Wv v v v v← ; 
11. end for 
12. for i = s to 2s-1 
13.     for j = i–s+1 to s-1 
14.         Calculate in accordance with key processes in Fig. 2; 
15.     end for 
16.     0i sm v− ← ; 

17.     2 1 0 2 1( , , ) (0, , )W Wv v v v v← ; 
18. end for 
19. 0sm v← ; 

20. if  && 1M N field≥ =  then 
21.     M M N← − ; 
22. endif 
23. return M; 

 
In the calculation process, two variables, j and i j− , are used to determine the flow of 

calculation, so as to avoid the increase of redundant variables. 
 When A B= , i.e., 0equal = , similar to the traditional FIPS modular multiplication 

algorithm, each internal loop needs only a simple accumulation of j i ja b −  and j i jm n − . As 
shown in Fig. 2, the Formula 3 is executed until the algorithm is over. 

( )2 1 0 2 1 0 -( , , ) , ,W j i jWv v v v v v m n← +  (3) 
 When A B≠ , i.e., 1equal = , as shown in Fig. 1, the symmetric partial product is 

accumulated in advance when accumulating the grey partial product j i ja b − , and after that, 
it just needs to accumulate j i jm n − . The algorithm controls the executed formula 
according to the relationship between j and i j−  each time. In the case of j i j< − , the 
partial product j i ja b −  is accumulated 2 times according to Formula 4. If j i j= − , 
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because there is no symmetric partial product, it will be accumulated according to 
Formula 5. For each time of the inner loop, both Formula 4 and Formula 5 need two 
multiplication operations and two addition operations. And when j i j< − , since the 
partial product j i ja b −  has accumulated ahead of time, and at this point only the j i jm n −  
part is left, for each time of the inner loop, Formula 3 only needs one multiplication 
operation and one addition operation until the algorithm is over. 

( )2 1 0 2 1 0 - -( , , ) , , 2W j i j j i jW
v v v v v v a b m n← + +        (4) 

( )2 1 0 2 1 0 - -( , , ) , ,W j i j j i jW
v v v v v v a b m n← + +        (5) 

When calculating the modular square, the computational flow of traditional FIPS modular 
multiplication algorithm is the same as modular multiplication algorithm, and needs 22s s+  
multiplication operations. The improved FIPS modular multiplication algorithm uses equal, j 
and i j− signals to distinguish and control the modular multiplication and modular square 
operation. It reduces unnecessary operations, but also increases the difficulty of hardware 
implementation. 

4.2 Algorithm efficiency 

In [22], the optimization for the modular square is also based on FIPS. Nevertheless some 
operations such operand accesses, multiplications and additions are more redundant in the 
algorithm, and the operations on the (2 )mGF  field are not supported. At the same time, no 
further analysis is made for the application of improved modular multiplier. 

For the FIPS algorithm, the coordinate system is constructed with i j−  as the abscissa axis 
and j as the ordinate axis, as shown in Fig. 3. The FIPS algorithm uses the product scanning 
mode, indicated by the red dotted line where i increments from 0 to 2 1s −  and the dashed 
arrow points to the ascending order of the i jb −  subscript. When A B= , all j i ja b −  on the dot 
matrix is symmetric about the j i j= −  line, and the cumulative directions shown in the red 
dashed line are also symmetric about the j i j= −  line. This makes it easier to adopt 

Algorithm 3 to calculate 
0

i
j i jj

a b −=∑  of the front s columns and 1

1

s
j i jj i s

a b−
−= − +∑  of the rear s 

columns without extra storage space. 

j

i=0
i=1
i=2

i=s-1

i-j

j=i-j

i=2s-1

..
.

ajbi-j

 
Fig. 3. FIPS Algorithm 
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According to Fig. 3, when A B= , the traditional FIPS algorithm needs to complete 2s  

w-bit × w-bit product operations in the square matrix and accumulate them. Through the 
improvement of the FIPS algorithm, only 2(3 ) / 2s s−  multiplication operations in the 
shadow of the square matrix are needed, and 2(3 ) / 2s s−  multiplication operations are 
reduced. By Formula 3, 5 and 4, similarly, the read operations on multiplication operands and 
addition operations on product results are reduced. Their reductions are 2s s−  and 

2(3 ) / 2s s−  respectively. The number of operations decreases as the width of operands varies. 
Table 1 shows the comparison of the cycles of modular square operations in different word 
widths, setting the frequency is 500MHz. In modular exponentiation operations of RSA and 
double point operations of SM2, it can make full advantage of the efficient dual-field FIPS 
modular multiplication algorithm. 

 
Table 1. Comparison of modular square operation time in different word widths 

Word Width Traditional(×10-9s) Proposed(×10-9s) Improvement (%) 
4 72 60 16.67 
8 272 216 20.59 
16 1056 816 22.73 
24 2352 1800 23.47 
32 4160 3168 23.85 
40 6480 4920 24.07 
46 9312 7056 24.23 
56 12656 9576 24.34 
64 16512 12480 24.42 

 
In addition, the difference of algorithm design in dual-field is represented in the following 

two aspects: 
 First, the addition operations in the prime field are carried with carries, and in the binary 

field, XOR operations are performed without carry. Similarly, the accumulation of the 
partial products in the multiplier is also different. 

 Second, due to no carry on binary domain, the final result will not be greater than N, and 
the subtraction step is omitted. 

5. Design of Efficient Dual-field FIPS Modular Multiplication 
Although the dual-field efficient FIPS modular multiplication algorithm has a certain 

degree of efficiency improvement, the data path of the operation is more complex, increasing 
the difficulty of controller design. The modular multiplication circuit employs resource reuse 
technology, focuses on the area and power consumption, and at the same time, optimize 
synthetically the circuit design. It provides an important support for the applications of public 
key cryptography in resource constrained devices. 

5.1 Logic structure 
As shown in Fig. 4, the logic structure of the efficient dual-field FIPS modular 

multiplication mainly consists of the following modules. 
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Modular multiplication control unit 

clk rst start done

Dual-field 
multiplier

Memory A

Memory B
Memory N

        Rigister n0'
Rigister  field

 Rigister  equal

Dual-field 
adder

results

field

equal

n0
'

N

B

A

Modular multiplication 
operation unit 

Data
Register 

file

Input unit 

 
Fig. 4. Logic structure of efficient dual-field FIPS modular multiplication 

 
 Data input unit 
It uses 32 bit bus for in turn receiving operands including A, B, N and 0n ' , and storing them 

in the corresponding memory. 
 Modular multiplication operation unit 
The module is the main part of the operation, which is responsible for the calculation of the 

critical path of the modular multiplication algorithm. The operation in the dual domain is 
mainly embodied in the multiplier and adder of this part. 
 Data register file 
It is mainly responsible for the preservation of the intermediate results of the operation 

process, including the field and equal signals which are stored in registers. field is used to 
control the selection on the dual fields, i.e., if 0field = , the operation on the ( )GF p  field will 
be executed; otherwise, the operation on the (2 )mGF  field will be executed. equal is used for 
modular square selection, if 0equal = , the operands are not equal and the modular 
multiplication operation will be executed; otherwise, the modular square operation will be 
executed. 
 Modular multiplication control unit 
The control part of the modular multiplication algorithm is implemented by a state machine, 

which mainly controls the data flow of the modular multiplication operation circuit. 

5.2 Modular multiplication operation unit 
The design of the dual field modular multiplication operation unit is mainly for multipliers 

and adders, e.g. 32 32×  bit multiplier, which compresses the partial product in the way of the 
Wallace tree [24], and obtains respectively the products of ( )GF p  field and (2 )mGF  field.  
The structure of the dual-field multiplier is designed as shown in Fig. 5. For the dual-field 
adder, n dual-field adder units are cascaded in Fig. 6 to complete the addition operations of 
two n-bit operands in dual fields. 
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×

Full adder/Half adder

Full adder/Half adder

...
Ful l adder/Half adder

carry

sum

sum

carry

carry

Full adder/Half adder

CPA

carry sum sum

carry sum

GF(p) GF(2m)

x y

Wallace
Tree

 
Fig. 5. Dual-field multiplier 

 
 

z

y ci

field

x

ci+1  
Fig. 6. Dual-field adder 

 
 

Considering the different requirements of speed, power consumption and area, the critical 
path of the pipelined modular multiplication circuit is implemented by two schemes. In the 
case that the application environment requires higher resources, a 32-bit dual-field multiplier 
and a 96-bit and 65-bit dual-field adders can be used, as shown in Fig. 7, in which the data 
stream and controller are relatively simple.  A higher performance implementation is to use 
two 32-bit dual-field multipliers and two dual-field adders, as shown in Fig. 8 in which the 
area is relatively increased and the controller is more complex. 
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mul_result_reg

bit multiplier32 32×

bit adder65 96

add_result_reg

 
Fig. 7. Data Path of Single-multiplier 

 

mul_result_reg mul_result_reg

add_result_reg

65_64-bit adder

add_result_reg

32   32-bit multiplier× 32   32-bit multiplier×

96_66-bit adder

 
Fig. 8. Data Path of Double-multiplier 

 
 

The main problem of the efficient dual-field FIPS modular multiplication circuit based on 
the critical path lies in the following two aspects. One is the operand width which determines 
the speed, area and power consumption of the circuit. Considering the application of 
resource-constrained, the multiplier in small width has the advantages of small size and low 
power consumption, but low speed. The other is the multiplier number. Double multipliers can 
increase the speed but it will double the area and increase the complexity of the controller. 

5.3 Modular multiplication control unit 
The modular multiplication control unit is implemented by a state machine, and mainly used 

to send the address to the RAM for reading a data, control the data flow on the data path, and 
send the address to the RAM for writing a data, as shown in Fig. 9, which includes nine states 
as follows. 
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Init

S0
S2

S1

S3

S4

S5S6

i<2s

j < i

S7

 
Fig. 9. State Transition of the Single Multiplier 

 
 Init: Initial state, waiting for data to be transferred to the RAM. 
 S0: The start signal becomes true when the data transmission is over, and then the reading 

signal is issued to start multiplying. 
 S1: a0 and b0 are read. 
 S2: Save the result to the register heap after multiplying and adding. 
 S3: 2 1 0 2 1 0 0( , , ) ( , , )W W iv v v v v v a b← + . 
 S4: 0 0 mod'

im v n W← . 
 S5: 2 1 0 2 1 0 0( , , ) ( , , )W W iv v v v v v m n← + , and then right shift. 
 S6: Internal calculation of the second cycle. 
 S7: Send signal done for denoting that the modular multiplication is over. 
This machine is triggered by three input signals such as clk, rst and start and will generate 

an output signal V_add. 
 clk. clk is a clock signal. 
 rst. rst is used to initialize the modular multiplication controller and registers. 
 start. When start becomes true, it denotes that the data is loaded and the modular 

multiplication operation need to be executed. 
 V_add. In the state S2, if 0 | 0i equal= = , then 1V_add = , otherwise 0V_add = . 
 done. The done signal is initialized to 0 at the time of rst reset or in the Init state, and it 

will be set to be 1 when the operation in the state S7 is completed. 
 V_Straight and V_Shift. The design employs three 32-bit registers such as V2, V1 and V0 as 

the additions and registers in the efficient dual-field FIPS modular multiplication, in 
which V2 keeps the 32 bits on the MSB (Most Significant Bit) so as to facilitate the shift 
operations as shown in Algorithm 4. The machine controls the changes of the register 
value through V_Straight and V_Shift: a) when 1V_Straight = , the sum value add_z of 
the dual-field adder is saved into the register; b) on the falling edge of clk in the S5 state, 
i.e., the accumulation of 0im n  has been completed, 1V_Shift = , the registers will execute 
the shift operation. 

 P0 - P3. They correspond to the 4 judgment conditions in Fig. 2. They also determine the 
read-write signal and enable signal of the memory A, B and N, and the bit extension in the 
dual-field multiplier. When the accumulation of each column in the front s columns is 
completed, P4 is used to control whether to add 0ia b  to the current column. 
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 i and j. These two registers and equal together decide the value of P0 - P3. They also 
determine the beginning and end of each inner loop and each outer loop. 

Under the combined action of the registers and the control signals, the specific pipeline of 
the dual-field multiplier and adder is as follows. 
 The register i is initialized to 0 at the start of the operation. As described in Algorithm 2, 

this condition does not satisfy the condition of the inner loop of the first outer loop. Thus, 
the accumulation of 0ia b  can be carried out directly. This is known beforehand before all 
modular multiplication operations start. Therefore, in the first cycle after the start signal 
is valid, the operands a0 and b0 are read directly. 

 In the second cycle, the multiply-add operation will be carried out. And, according to 
field, equal and P0 - P4 and other related signals, the next operands to be calculated will be 
read. 

 According to Fig. 2, when Formula 4 and 5 are executed, after each time ja  and i jb −  are 
read, in the next time jm  and i jn −  must be read. This facilitates the control of read/write 
and enable signals of memory. 

 When j i j< −  and 23 1p = , j i ja b −  is shifted left. 
 When j i j> − , only the operand jm  and i jn −  are read. In each subsequent cycle, the 

operations including multiply-add, read, and storing the result of the calculation in the 
corresponding register stack are executed repeatedly. 

 When A B≠ , S6 is always executed. When A B= , S6 is executed only when the first 
column is computed. 

 In the state S7, the signal 1done =  so as to generate the completeness signal of the 
modular multiplication operation. 

In order to perform  respectively 1024-bit modular multiplication operation and modular 
square operation with the pipeline organization,in traditional FIPS algorithms, 2084 and 1044 
clock cycles are required, and only 1588 and 796 clock cycles are required in the improved 
FIPS algorithm. 

6. Experiment and Simulation 
In the case of single multiplier and double multiplier setting frequency of 500MHz, the 

cycle number and the optimization rate of modular multiplication and modular square 
operation under different word width are shown in Fig. 10. The number of cycles is more than 
4 cycles compared to the theoretical cycles shown in Table 1, and the optimization rate is 
equal to the ratio of the number of reduced cycles to the number of cycles of the modular 
multiplication. For n-bit operands, the number of cycles of modular square is reduced by 

2( ) / 2s s− , where / 32s n= . The optimization rate increases as the number of bits of 
operands increase. When s tends to infinity, the optimization rate approaches 25%. 
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When the number of 1 in the key is half of the width in different word width, the number of 

cycles between L_R and ML is shown in Fig. 11, setting the frequency is 500MHz. L_R 
guarantees the maximum utilization of the modular square circuit. The speed of L_R is 1.25 
times of ML which needs two modular multipliers. 
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Fig. 11. Cycles comparison of L_R and ML in different word widths 

 
The synthesis results of 1024-bit modular multiplication on the Xilinx Artix-7TM FPGA 

device are compared as shown in Table 2. Due to the different FPGA devices with different 
maximal clock frequency, in order to evaluate more objectively, we mainly list the area (LUTs) 
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and the latency (cycles), and compare them with the throughput AT2 [15], in which A is the 
area (LUTs) and T is the latency (cycles). Different from [31] and [32],  the proposed scheme 
supports dual-field operations. The AT2 in the proposed design is slightly larger than Sudhakar 
[33], but the number of LUTs is smaller. Compared with other modular multiplication circuits, 
the proposed method has good AT2 throughput with less power consumption. 

 
Table 2. Implementation comparison of modular multiplication circuits 
Design Area(LUTs) Latency(μs) AT2(LUTs×μs2) 
Ours 2557 3.18 25857.41 

Verma [27] 5718 2.68 41068.96 
Erdem [28] 34904 0.91 28904.00 

Dai [29] 6047 4.00 96752.00 
Wu [30] 11361 2.89 94888.21 

Wang [34] 5430 4.05 89065.58 

7. Conclusions and Future Works 
Through optimizing the logic of the modular square based on the FIPS Montgomery 

modular multiplication algorithms, we can effectively improves the efficiency of the public 
key cryptography algorithm and reduces the power consumption of redundant operations, so 
as to make it suitable for use in resource constrained devices. Experimental results show that 
the proposed circuit increases 23.8% speed compared to the traditional FIPS on 1024-bit 
modular square. In addition, the circuit has strong expansibility, and the supported modular 
multiplication length can be increased according to the actual demand. 

The dual-field FIPS modular multiplication supports both ( )GF p  and (2 )mGF  fields, and 
provides the basic modular operation for the RSA and SM2 cryptosystems. Based on the 
dual-field FIPS modular multiplication, some modular operations such as modular square and 
modular exponentiation can be implemented for the RSA cryptosystem. However, some 
high-level operations over SM2 modular arithmetic layer including the single point operation 
layer and the multiple point operation layer are not addressed. It is a worthwhile direction to 
employ the efficient dual-field FIPS modular multiplication module to perform point 
operations so as to realize the hardware support of the dual-field modular multiplication for 
both RSA and SM2 cryptosystems. In addition, the operations on dual-filed include 
multiplication and addition. An arithmetic unit supporting both multiplication and addition 
needs be be further optimized in logic design in order to reduce logic resource and power 
consumption. 
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