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Abstract 
 

RSA is a public key cryptosystem that is currently the most popularly used in information security. 

Development of RSA variants has attracted many researchers since its introduction in 1978 by 

Ron Rivest, Adi Shamir, and Leonard Adleman. In this paper, we propose an algebraic structure 

for RSA and show that the proposed structure covers all known RSA variants. The usefulness of 

the proposed structure is then proved by showing that, following the structure we can construct a 

RSA variant based on the Bergman ring. We compare the original RSA and its variants from the 

point of view of factoring the modulus to determine why the original RSA is widely used than its 

variants. 
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1. Introduction 

The RSA cryptosystem, named after its inventors Ron Rivest, Adi Shamir, and Len Adleman, 

was introduced in 1978 and has been widely used for ensuring the privacy and authenticity of 

digital data. Since then, there has been concentration on two trends considering the RSA 

cryptosystem: (i) point out vulnerabilities of the cryptosystem, and (ii) develop its variants. 

Although there have been many variants of the RSA, cryptanalysis on those has not attracted 

many researchers as compared to the original RSA. We recall some remarkable results in 

cryptanalysing on low private exponent RSA in Section 2 after recalling the original RSA 

cryptosystem. In Section 3, we give an answer for the question why RSA variants are built on 

platform other than   . Section IV devotes for an algebraic structure of RSA, we also show in 

this Section all known RSA cryptosystems having this algebraic structure. The usefulness of the 

structure is then made clear in Section V, where we recall the construction of Bergman ring based 

RSA. A slight comparison between known RSAs in Section 4 can help answer the question why 

the original RSA is preferred over its variants.  

 

2. RSA and cryptanalysis on the RSA cryptosystem 

 

2.1. The original RSA cryptosystem 

For the convenience of the reader, we briefly describe the original RSA cryptosystem in the form 

of a theorem. The proof of this theorem and its working can be found in [1].   

Theorem 2.1 Given   and   as two distinct primes. Let     ,                , 

and     be two integers such that               . Then, for all     , we have 

             . 

This theorem ensures the encryption and decryption phases in the RSA cryptosystem as follows: 

a plaintext      is encrypted by computing             and   is in turn decrypted 

by calculating            .  

 

2.2. Attacks on RSA 

Although there has been no polynomial time algorithm for factoring an integer n into product of 

primes so far, there have been many attacks on the original RSA scheme. By considering the 

continued fraction expansion of 
 

 
, Wiener showed in [2] that one can recover   for the case 

when   
 

 
 
 

 . A better result was considered by Boneh and Durfee [3] for the case when 

        . In such a case, by solving the small inverse problem,   can be recovered. Lattice 

reduced algorithms, such as Gaussian or LLL algorithms can also be applied to recover   in 

some cases of low exponent private key [4]. However, so far, no devastating attack has ever been 
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found. 

A common attack on RSA is factoring the modulus  . Knowing     , an attacker can 

calculate                 and then find the private key                . 

Factoring modulus   in the case     being weak primes was considered by A. Nitaj and T. 

Rachidi [5]. Currently, the fastest algorithm for the factoring a whole number   is the General 

Number Field Sieve algorithm [6], which has a complexity of 

      
  

 

 
           

 

        
 

  .  

 

3. RSA variants 

If   is a positive integer and     
    

     
  , where            are distinct prime 

numbers and                 , then we denote               . Apparently, the 

original RSA scheme still holds when         [7]. We first prove that          is the 

only form of   under that an RSA encryption scheme can be applied to all messages belonging 

to   .  

Proposition 3.1 Suppose that there exists a natural number     such that the map 

        

            

 

is a bijection. Then,         . 

Proof.  

Suppose that     
    

     
  where            are distinct prime numbers and assume 

the contrary that         , then at least one of            is larger than 1. Without loss of 

generality, we can assume     . Considering     
      

     
     , it is obvious that 

   . Since    , then           . It follows that          , which contradicts 

the bijection of  .  

Proposition 3.1 explains the reason for the two trends in developing RSA variants. For the first 

trend, the RSA cryptosystems are developed on the ring   . For RSA cryptosystems where the 

modulus   is the product of distinct primes, some additional algorithms are applied to speed up 

the decryption or encryption process in the cryptosystem. The Batch RSA [8], Multi Prime RSA 

[7], DRSA [9] are examples of such cryptosystems. For RSA cryptosystems where the modulus 

  is not a product of distinct primes, the space of plaintexts must be reduced to a subset of    

instead of the entire   . For example, in the MultiPower RSA cryptosystem [10], the modulus   
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has the form       with        , where     are distinct primes and the space of 

plaintexts is the reduced residue group modulo  . This RSA variant was then combined with 

DRSA to increase the encryption verification performance [11-12]. Attacking to these RSA 

variants has been concerned by many authors, we refer the reader to [13-14] for cryptanalysing on 

MultiPower RSA.  

In the second trend, platforms other than    should be chosen for plaintexts. So far, there 

have been many variants of RSA constructed in this manner: In 1985, Varadharajan and Odoni 

constructed an extension of RSA to matrix rings [15]; In 1993, Demytko, proposed an elliptic 

curve-based RSA variant at EUROCRYPT [16]; In 2004, El-Kassar, Hatary, and Awad 

developed a modified RSA in the domains of Gaussian integers and polynomials over finite fields 

[17]. The critical equality       in those cryptosystems was obtained using different 

methods depending on the platforms. Here, we concentrate on an abstract model by proposing a 

semigroup  platform together with conditions that ensure equality and then show that the model 

will cover all mentioned RSA cryptosystems. 

From now on, if   is a binary operation on a set  ,   is a positive integer, and    , then 

we denote                 
       

 by      .   

 

4. Generic RSA scheme 

 

4.1 A generic model for RSA 

Let   be a nonempty set and * be a binary operation on   such that       is a semigroup, and 

suppose that     is a set of plaintexts. The equation       for all     is a basic 

equation in RSA cryptosystems. We propose some conditions for establishing this equation as 

follows.  

Proposition 4.1 Let       be multiplicative semigroups,   be a nonempty subset of  , and 

            be two homomorphisms. Suppose that 

(i) There exist groups           and           such that              
and             .  

(ii) The map         defined by                  is an injective.  

Let                                           , and     be two chosen 

integers such that            and            . Then, we have       for all 

   .  
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Proof. Assume that    .  

For    , since              and       are groups, then              for all 

integers   satisfying                    . This implies that              . As   

is a homomorphism,                     . 

Similarly, we have              . 

Since             and            , then            . Therefore,       as 

  is an injective.■ 

Using the symbols and hypothesis as in the above theorem, we propose a generic model for an 

RSA cryptosystem as follows.  

The generic RSA cryptosystem  

Key creation 

- Choose   satisfying       and           . 

- Find             .  

- Publish   as public key and keep   as private key.  

Encryption 

- A plaintext     is encrypted by calculating     . 

Decryption 

- Ciphertext   is then decrypted by calculating     .  

From now on, if   is a ring and    , we write     for the ideal of   generated by   and 

write       for the quotient ring of   by    . Next, we show that our proposed model can 

cover all known RSA variants. 

 

4.2 The original RSA 

Consider the ring     , where      is the product of two distinct primes     and 

   . Since the ring isomorphism         , the projectors     from   to      

and      satisfy the hypothesis in Proposition 4.1. Therefore, the equation       holds 

for all       , where     are integers that satisfy            . In this case, we 

choose  

                                     

then  
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We achieve the original RSA cryptosystem.  

  

4.3 The RSA on the quotient rings of polynomials 

The ring of polynomials       is considered in this instance, where   is a prime number. 

Similar to the original RSA, let                 be irreducible polynomials having degree 

    and               . Consequently, the number of invertible elements in       
                    and              is           and                , 

respectively. Therefore,             holds for all                  , where     

are integers chosen such that            and            . The equation        
     ensures the encryption              and decryption             . The RSA 

on the quotient rings of polynomials can be regarded as an instance of the proposed model 

mentioned in Section 4.1 where  

                , 

                             , 

                             . 

                      , 

                      , 

and     are projectors from              onto                           respectively.     

 

4.4 The RSA on the quotient ring of Gaussian integers 

The Gaussian ring is defined by                   with common addition and 

multiplication. The norm on      is given by              . Euclidean division is 

valid on     ; hence,      is an Euclidean ring. All units in      are          . Euclidean 

division gives rise to the concept of primes in     . A number        is prime in      if and 

only if   is a unit multiplied by one of the following: 

(i)      

(ii) a prime number    , where           , or 

(iii)           , where         is a prime in   with           . 

A prime        is called type  , type  , or type   corresponding to cases (i), (ii), and (iii), 

respectively. 
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The Euler’s Phi function              is a function in which for all           ,      
is the number of invertible elements in the quotient ring         . Then, for prime element 

      , we have           [18]. 

Let     be two prime elements in      and      , then               . The 

equation       holds for all           , where     are integers chosen such that 

              and               . This ensures the encryption      and 

decryption      for all plaintext           . 

The RSA on the quotient ring of Gaussian integers can be regarded as an instance of the proposed 

model described in Section 4.1 where 

                                  , 

                             , 

                      , 

                      , 

               , 

and     are projectors from            to            and           , 

respectively.   

 

4.5 The RSA on the ring of matrices 

Let     be two prime numbers,     , and   be a positive integer. Let            , and 

      denote the multiplicative groups of all non-singular     matrices having elements in 

     , and   , respectively. The orders      , and    of these groups can be shown by 

                                      (1) 

                                         (2) 

and 

       ,                                     (3)                 

respectively. 

Choose two positive integers     satisfying             and             . The 

Lagrange theorem in group theorem implies that       , where    denotes the unit matrix 

in      ; hence,       for all        . This ensures the encryption      and 

decryption      for all plaintext        . Since                   , the RSA 

variant on the ring of matrices is an instance of the model described in Section 3.1 where 
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and    are projectors from       to       and      , respectively.    

 

4.6 The RSA on the elliptic curve group 

Let     be a prime, and let     be integers chosen such that                  . 
The elliptic curve group modulo  , denoted by        , is a set of all pairs             

satisfying            on   , together with an element denoted  . The operation   

on         is defined such that   is the identity element and for two points 

                         , the result              is determined as follows: 

 

-If    , then          . 

-If       and       , then      . 

-Otherwise,  
            

               
 where 

  

 
 

 
     
     

                                     

   
   

   
                     

  

 

A complementary elliptic curve group, denoted by                   , is a set of all pairs       

      satisfying           , together with an element denoted  ; however, y is of 

the form      , where        and   is a fixed quadratic non-residue. The operation   

on                    is identically defined to that on        . The orders of         and                    

are denoted by           and                     , respectively. These numbers can be found by some 

polynomial time algorithms, for example, the algorithm considered in [19]. 

For RSA on the elliptic group, we choose two distinct primes     and let     . Select 

two integers     such that                  . Denote             ,    

                                                           and           . 
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Choose two integers     such that            , then the equation            

      holds for all      and           . This equation ensures the encryption and 

decryption as in the original RSA. 

We can apply the proposed model to this instance of RSA. Indeed, suppose that    and    

are generators of multiplicative groups   
  and   

 , respectively. Then,                          

      and                                are complementary elliptic groups of         

and        , respectively. Denote by        and    elements in    such that 

 

                           

                           

and 

                            

 

Then, for each     , one and only one of the following cases occurs: 

             

               

               

               

Therefore, if we define 

  
                     

          , 

  
                       

          , 

  
                       

          , 

  
                       

          , 

then for each     , there exists exactly one of the above sets containing an element with the 

first coordinate  . 

 It is well known that we can define a operation   on           
   and        

               . Therefore, two projectors     
           and     

           

are homomorphisms. Proposition 3.2 ensures that                  for all         
  , 

where     are integers satisfying               with               . 
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Similar to the operation   on           
  , we can define a binary operations   on 

  
     

    and   
   such that these sets become groups and  

  
                             ,  

  
                             , 

  
                                        . 

Proposition 4.1 ensures the equation                  for all         
  
     

     if     satisfy                with               . In other words, the 

proposed model is applied to each group   
  
          separately. 

Because the operators   on   
  
          are defined in a similar way, the first 

coordinates    in the equation                   are the same, and they do not depend 

on    , where         
  

. Demytko [16] gave a formula for    by setting    
  

  
   

  

  
 

in homogenous coordinates: 

 

       
     

          
        ,           (4) 

          
       

     
         ,          (5) 

 

 

           
     

                                             
       

         ,         (6) 

                      
        ,           (7) 

   
  

  
.                                       (8) 

 

4.7 Comparison 

Since there are many time polynomial algorithms (e.g., Berlekamp [20], Ben-Or [21], and 

Cantor–Zassenhaus [22]) for factoring a polynomial            into the product of 

irreducible polynomials, the RSA cryptosystem on the quotient ring of polynomials can be easily 

broken using these algorithms.  

We compare the security among RSAs by evaluating the complexity of the brute-force algorithm 

for factoring the modulus  . For simplicity, we assume that the length of each plaintext is 1024 

bits. 
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Table 1 shows the lengths of modulus as well as the number of operations involved in encryption 

processes in original RSA and those in its variants, where   is the public key. 

 

Table 1. Lengths of modulus and number of operations involved in RSAs cryptosystem 

 
Length of the 

modulus 

Least number of 

operations 

Original RSA 1024       

RSA on the quotient ring of Gauss 

integers 
512        

RSA on the group of matrix 256         

RSAon the elliptic curve group 1024        

Bergman ring based RSA 256         

  

For the original RSA cryptosystem, because a plaintext      has a length of      bits, 

the modulus   must have the same length as  . Therefore, the algorithm for factoring   is 

applied for a     -bit number  . 

For the RSA cryptosystem on the quotient ring of Gaussian integers, a plaintext        
has a length of      bits, and therefore, both   and   have a length of     bits. Thus, the 

length of the value            does not exceed      bits. Because            , 
     must have a length less than      bits. Hence, the length of modulus   is     bits. 

Factoring a    -bit number   may be simpler than the case for the original RSA. 

For the RSA on the ring of matrix, one can determine     by factoring  . Hence, we 

calculate       by (1), (2), respectively, and then    by (3). Then, the private key   can be 

calculated from these values. Suppose that    , then a plaintext         is a matrix 

having at least four elements. Because   has a length of      bits, each of its four elements 

must be     bits. Since each element belongs to   ,   must be     bits. Factoring   in 

this case is simpler than that in the original RSA. 

In both the original RSA and the RSA on the elliptic curve group, each plaintext element 

    has the same bit length as modulus  . However, the encryption and decryption in RSA on 

the elliptic curve group requires more operations than those in the original RSA. In the original 

RSA, encrypting             requires        multiplications using a fast power 

algorithm. The numbers of operations in (4), (5), (6), and (7) are 11, 12, 21, and 5, respectively. 

Therefore, for the RSA on the elliptic curve group, the number of operations for encrypting a 

plaintext   to cipher text   using the equation                 requires at least 5      

multiplications. 
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In our cryptosystem mentioned in the next Section, a plaintext   is a matrix having four 

elements. Because   has a length of      bits, each of its four elements must be     bits. 

Since each element belongs to   ,   must be     bits. Factoring   in this case is simpler 

than that in the original RSA. 

The above argument shows that, for the same length of the modulus, the lengths of plaintexts 

and cipher texts in original RSA cryptosystems are shorter than those in its variants. This partially 

explains why the original RSA cryptosystem is more widely used compared to other RSA variants.    

5. A new variant of RSA: probability RSA 

Based on the proposed scheme, we developed a Bergman ring based cryptosystem analogue of 

RSA. We briefly describe this cryptosystem as follows. 

Bergman [23] established that             is a semilocal ring with    elements, where 

  is a prime. Climent et al. [24] identified the elements of this ring as     matrices that form 

the ring 

     
  
   

                               

The multiplication and addition operations on this ring are defined as follows:  

if    
    
     

         
    
     

 , then 

     
                            

              
               

  
   

and 

  

     
                               

                  
                    

  
   

Now, let     be two distinct primes and     . We denote   

     
  
   

                               

It is easy to verify that the multiplication defined by 

 
    
     

   
    
     

   
                               

                  
                    

  
  

is a binary operation on   . 

We define the maps         and         as follows.  

For    
  
    

    ,       
    
     

  and       
    
     

 ,  

where 
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                                  , 

                                    , 

                                  , 

                                    , 

and  

                         . 

Then, we can prove the following propositions. 

Proposition 5.1   and   are homomorphisms and the map             defined by 

                 is an injective. 

We denote by   
  and   

  the set of all invertible elements in    and   , respectively. Further, 

  
  and   

  are multiplicative groups with orders          and         , respectively 

[24]. Applying the model proposed in Section 3.1 where  

              , 

              
              

  , 

and 

        
           

 , 

the equality       holds for all     if     satisfy             with   
                      . Therefore, we can construct the cryptosystem analogue of RSA. 

The details and the cryptanalysis of this cryptosystem were discussed in [25].    

6. Conclusions 

The equality       plays an important role in a RSA cryptosystem, it ensures encryption 

and decryption phases in the cryptosystem. The paper has proposed a algebraic structure, or a 

scheme, for constructing a RSA cryptosystem by proposing conditions which ensure that equality 

on a semigroup. Applying this scheme, the equalities in known RSAs are then established by uni-

scheme, despite of the RSA platforms being quotient rings or groups. The usefulness of the 

proposed scheme is proved when constructing Bergman ring based RSA, which follows the 

proposed scheme and has some advantages compared to the original RSA. One may ask whether 

the proposed scheme will be applied for a future RSA variant. The answer is yes if that RSA 

variant built on a commutative group; we will look more closely at the answer in another article. 
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