• 제목/요약/키워드: Shallow water model

검색결과 459건 처리시간 0.023초

태풍의 풍향특성을 고려한 천해파 산정에 관한 연구 (A Study on the Numerical Calculation for Shallow Water Waves Considering the Wind Direction Characteristics of Typhoon)

  • 이경선;김정태;류청로
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2007
  • While a typhoon is traveling, characteristics of its wind fields are continuously changing, producing severe changes in local water level and wave conditions, especially, when a typhoon comes into shallow water. However, there have not been many studies related to local typhoon effects, especially, considering real time changes of wind direction related to the coastal topography. In the study, the characteristics of the wind field by typhoon and topographical characteristics in shallow water are considered, as well as conditions of wave climate estimation. These are performed by the SWAN (Simulating waves nearshore) model, in order to estimate the growth of wave energy due to the wind field. It can be strongly suggested that the wave energy of theof an inner bay should be estimated when the direction of the bay entrance and the wind direction of the typhoon are identical. The result of the numerical calculations is in better agreement with the observed data than the result of the conventional estimation techniques.

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토 (Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model)

  • 천제호;안경모;윤종태
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.63-78
    • /
    • 2009
  • 본 논문에서는 천해에 적용 가능한 동적결합형 태풍 해일-조석-파랑 수치모델의 개발과 개발된 모델의 정확성을 검증하였다. 태풍 해일과 조석 수치모델은 POM (Princeton Ocean Model)을 기반으로 하였으며, 풍파 파랑 수치모델은 WAM (Wave Model)을 기반으로 천해에 적용할 수 있도록 수정하여 두 모델을 동적으로 결합하였다. 연속된 두 개의 논문 중에 첫 번째 논문인 본 논문에서는 해일과 조석을 수치 모의하는 해수유동 부분의 수치모의의 안정성과 정확성을 검증하였다. 수치모의의 안정성과 정확성 향상을 위하여 기존의 POM 모델의 난류 수치모델 부분과 연직속도 계산 알고리즘을 수정 보완하였다. 수정된 POM 모델의 정확성과 수치적 안정성 검증을 위하여 해석해와 실 해역에서 측정된 관측결과와 비교하였으며, 수정된 POM 모델이 기존의 POM 모델보다 수치계산의 안정성과 정확성이 개선되었음을 확인할 수 있었다.

생태계 모델을 이용한 갯벌의 수질정화능력 산정 (Estimation of Ability for Water Quality Purification Using Ecological Modeling on Tidal Flat)

  • 신범식;김규한
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.42-49
    • /
    • 2007
  • It has been known that shallow-water regions, such as tidal flats, sea grass and sea weed beds have water purification capability, and they also serve as nursery grounds for many fishes. On the other hand, tidal flat areas are economically attractive sites for reclamation, to be used for developing industries. When developing shallow-water areas, we have to propose a plan to mitigate the environmental impact associated with such a development plan. However, it is difficult to estimate the affects on the ecosystem and water purification, and the literature related to this matter is insufficient. In order to evaluate the ability of coastal tidal flat and to predict the future changes, it is necessary to develop a reliable prediction technique and construction of data by using a field investigation. In this study, we carried out a numerical model test for the tidal flat ecosystem, using the pelagic system and the benthic system, simultaneously, in order to show a change in the tidal flat ecosystem. The flow of nitrogen, phosphorus and carbon has been identified as a primary consideration of marine ecosystem components, and the capability of water purification and the change of the tidal flat were predicted using this flow. In order to make a more reliable prediction, a field investigation to determine tide, current and creatures of the object coastal area has been done. The purification capability of this shallow-water region is estimated from the model results. According to the results of experiments, the tidal flat has a capability of water purification (Sink) of 11mgN/m2/day, but the other area has a load (Source) of 20mgN/m2/day. As a result, we could confirm that the tidal flat of an object coastal area plays an important role in water purification.

Rainfall-induced shallow landslide prediction considering the influence of 1D and 3D subsurface flows

  • Viet, Tran The;Lee, Giha;An, Hyunuk;Kim, Minseok
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.260-260
    • /
    • 2017
  • This study aims to compare the performance of TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability model) and TiVaSS (Time-variant Slope Stability model) in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. The present study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( index), which was developed for addressing point-like landslide locations. In addition, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models have characteristics that are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30% to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

  • PDF

태풍 '매미' 내습시 파랑선정에 관한 기초적 연구 (A Study on the Numerical Calculation for Wind Waves During the Passage of Typhoon 'Memi')

  • 이경선;김홍진;윤한삼;류청로
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.229-234
    • /
    • 2004
  • A Typhoon wave is generated by wind fields during the Passage of Typhoon. Transporting wind field makes wind wave and swell in the open sea, and then, those wave components are transported in the shallow water. Typhoon waves in the shallow water is generated by Typhoon wind field and incident wave. Bisides, Incident waves to the shallow water are deformated by topographic conditions. This paper estimated the analysis of the Typhoon waves by wind fields and incident waves according to wave action balance equation model. As the result of wave numerical experiment, wave field during the passage of Typhoon 'Memi' in the shallow water is strongly effect by wind fields. Wave action balance equaion can be partially used for Typhoon wave simulations.

  • PDF

KVLCC2 선형의 천수영역에서의 자세 변화에 대한 연구 (Study of Ship Squat for KVLCC2 in Shallow Water)

  • 윤근항;박규린;박병재
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.539-547
    • /
    • 2014
  • Ship squat is a well known phenomenon, which means an additional sinkage and a change of trim when a ship sails in shallow water. As a series of ship squat study, a HPMM(Horizontal Planar Motion Mechanism) test of KVLCC2 model ship to measure a sinkage and a trim in shallow water was conducted. Additionally a CFD(Computational Fluid Dynamics) analysis was carried out to simulate fluid flows around the ship surface. A change in ship speed, drift angle at three depth conditions(H/T = 1.2, 1.5 & 2.0) is considered for comparing these results. As a result, an increase of the ship speed and the drift angle caused an increase in ship squat in EFD(Experimental Fluid Dynamics), and created a lower pressure on the ship bottom area in CFD. Lastly the sinkage results of KVLCC2 by EFD and CFD are compared to results by three empirical formulas. The tendency of sinkage by EFD and CFD is similar to the results of empirical formulas.

불연속 지형을 지나는 천수 흐름의 해석을 위한 수심적분 모형에 대한 새로운 기법 (A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography)

  • 황승용
    • 대한토목학회논문집
    • /
    • 제35권6호
    • /
    • pp.1237-1246
    • /
    • 2015
  • 불연속 지형을 지나는 천수 흐름의 해석에서 흐름률을 정확하게 계산하기 위하여 계단에 의한 흐름 저항이 지배적인 계단 전면과 그 영향이 비교적 덜한 계단의 윗부분을 구분하여 접근하는 새로운 기법을 제안하였다. 새로운 기법에 의한 모의 결과는 정확해, 가상의 문제에 대한 3차원 모의 결과, 그리고 실험 결과와 대체로 잘 일치하였다. 이 연구에서 개발된 기법으로 불연속 하천구조물을 넘나드는 천수 흐름에 대한 직접 해석이 가능해졌다. 보나 옹벽(강변 도로)의 월류 양상 그리고 불연속 지형으로 이루어진 도심에서 범람에 따른 침수 구역의 정확한 산정에 개발된 기법의 적용이 기대된다.

Analysis of 2-Dimensional Shallow Water Equations Using Multigrid Method and Coordinate Transformation

  • Lee, Jong-Seol;Cho, Won-Cheol
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 1998
  • Various numerical methods for the two dimensional shallow water equations have been applied to the problems of flood routing, tidal circulation, storm surges, and atmospheric circulation. These methods are often based on the Alternating Direction Implicity(ADI) method. However, the ADI method results in inaccuracies for large time steps when dealing with a complex geometry or bathymetry. Since this method reduces the performance considerably, a fully implicit method developed by Wilders et al. (1998) is used to improve the accuracy for a large time step. Finite Difference Methods are defined on a rectangular grid. Two drawbacks of this type of grid are that grid refinement is not possibile locally and that the physical boundary is sometimes poorly represented by the numerical model boundary. Because of the second deficiency several purely numerical boundary effects can be involved. A boundary fitted curvilinear coordinate transformation is used to reduce these difficulties. It the curvilinear coordinate transformation is used to reduce these difficulties. If the coordinate transformation is orthogonal then the transformed shallow water equations are similar to the original equations. Therefore, an orthogonal coorinate transformation is used for defining coordinate system. A multigrid (MG) method is widely used to accelerate the convergence in the numerical methods. In this study, a technique using a MG method is proposed to reduce the computing time and to improve the accuracy for the orthogonal to reduce the computing time and to improve the accuracy for the orthogonal grid generation and the solutions of the shallow water equations.

  • PDF

POD를 이용한 1차원 천수 근사방정식의 유동해석 (OD analysis of fluid flows given by one-dimensional shallow water equations)

  • 서용권;박준관;문종춘;김용균
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1679-1689
    • /
    • 1997
  • In this paper, a precise description is given to the basic theory as well as the detailed algorithms for the numerical treatment of the method of POD (proper orthogonal decomposition). This method is then applied to analysing the numerical solutions of one-dimensional shallow-water equations to show how the method is affected by various parameters such as the sampling time, sampling numbers, and the spatial resolution for the autocorrelation function. A few curious features associated with this flow model found through the analysis are further explained and discussed.

지진해일 해석을 위한 실용적인 기법의 적용 - 부산 신항만 지역 (Application of Practical Scheme for Analysis of Tsunamis - Busan New Port Area)

  • 최문규;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.395-398
    • /
    • 2007
  • In this study, new dispersion-correction terms are added to leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering the dispersion effects of the linear Boussinesq equations for the propagation of tsunamis. The new model is applied to near Gadeok island in Pusan about The Central East Sea Tsunami in 1983 and The Hokkaldo Nansei Oki Earthquake Tsunami in 1993 one simulated in the study.

  • PDF