• Title/Summary/Keyword: Shaking-table tests

Search Result 331, Processing Time 0.027 seconds

Shaking Table Test of a 1/5 Scale 3-Story Nonductile infilled Reinforced Concrete Frame (조적채움벽이 있는 1/5 축소 3층 비연성 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.541-546
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA`s) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period of the model.

  • PDF

Shaking Table Tests of A 1/12-Scale Reinforced Concrete Upper-Wall Lower-Frame Structure (1/12 축소 철근콘크리트 주상복합구조물의 진동대실험)

  • 이한선;김상연;고동우;권기혁;김병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.139-144
    • /
    • 2001
  • The objective of this study is to investigate the behavior of 1/12 scale upper-wall lower-frame reinforced concrete structure subjected to earthquake excitations. For this purpose, Taft N21E earthquake accelerogram was simulated by using 4m$\times$4m shaking table. When the input acceleration is compared to that of output, it was found that simulation of shaking table is satisfactory. From the test results with peak ground acceleration(PGA) 0.22g, which corresponds to 0.11g in prototype by the similitude law, it can be observed that the model responded in elastic behavior and that large interstory drift occurred at the lower part of the structure.

  • PDF

Modulus of Horizontal Subgrade Reaction in Liquefying Sand by Shaking Table Test (진동대 시험을 통한 액상화되는 지반의 수평지반반력계수에 대한 연구)

  • 박종관;한성길;김상규;이용도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.255-262
    • /
    • 2000
  • Shaking table tests were peformed to evaluate the subgrade reaction of ground according to the build-up of pore water pressure. Model pile was installed in the sand ground. The acceleration of the model ground, the pore water pressure build-up and displacement of pile were recorded by measuring devices. Subgrade reaction approach based on Winker soil model was applied to obtain the modulus of the horizontal subgrade reaction. The results of analysis show that the reduction factor of the subgrade reaction due to pore pressure increase is about 1 and the horizontal subgrade reaction of liquefied ground is not influenced by the stiffness of pile, a ground acceleration and the intial ground density.

  • PDF

The Comparision of Analysis Methods in dynamic Design of Dam based on Shaking Table tests (진동대시험에 근거한 댐의 내진설계시 해석 방법의 비교)

  • Hwang, Seong-Choon;Oh, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.732-737
    • /
    • 2005
  • This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo static analysis and frequency domain response analysis, time domain history analysis of dynamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

  • PDF

Shaking Table Test of Small Scale RC Structure with Tuned Liquid Damper (동조액체 감쇠기를 설치한 철근콘크리트 축소모델의 진동대 실험)

  • Woo, Seang-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.113-116
    • /
    • 2005
  • In this study, in order to. investigate the effectiveness af tuned liquid damper (TLD) for the seismic performance enhancement af the existing reinforced concrete (RC) apartment structure which is nat seismically designed, shaking table test was conducted for the small scale five stary RC structure with TLD. TLD model was constructed to. have the frequency tuned to. the first modal frequency af the structure, $2\%$ mass ratio. af the first modal mass, and 0.08 liquid depth ratio. White noise with $0.2\~5Hz$ frequency bandwidth tests were performed using the shaking table at Korea Institute af Machinery and Materials, and the displacement and absolute acceleration af each floor were measured. Test results indicate that mare than $30\%$ seismic responses reduction can be achieved using TLD for RC structure under white noise.

  • PDF

Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems (쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

A Shaking Table Test of Small Isolation System Considering the Floor Response (층응답을 고려한 소형면진장치의 진동대실험)

  • Kim, Min-Kyu;Choun, Young-Sun;Lee, Kyung-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems (내진 천장시스템의 실규모 진동대 실험 및 해석)

  • Kim, Hoyeon;Choi, Yong-Soo;Sim, Jaeil;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.135-143
    • /
    • 2018
  • In the current research, a seismic ceiling system as one of non-structural elements in buildings has been developed by applying newly designed vertical hanger clips combined with M-bar channel clips. In order to evaluate the seismic performance of the developed system, full-scale shaking table tests of one story frame structure with the conventional ceiling system or the developed seismic ceiling system were performed with time-history responses under earthquake loads. The developed system was also evaluated by the time-history dynamic analysis. From seismic test and analysis, it was shown that the developed seismic ceiling system could give improved seismic performances to minimize displacements and damages of ceiling systems as well as enhance seismic safety of the ceiling system.

An Experimental Study of the Seismic Isolation Systems for Equipment Isolation : EPS (기기면진을 위한 면진장치의 거동분석실험 (I) : FPS 거동분석)

  • 전영선;김민규;최인길;김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.403-410
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. Finally, it is presented that the FPS systems are effective for the small equipment isolation. Key word equipment isolation, nuclear containment, shaking table test, Friction Pendulum System (FPS)

  • PDF

Shaking Table Test of Steel Cylindrical Liquid Storage Tank Considering the Roof Characteristics

  • Bae, Doobyong;Park, Jang Ho
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1167-1176
    • /
    • 2018
  • Steel cylindrical tanks are widely used for the storage of hazardous substances of which leakage must be prevented under any circumstances. However, the dynamic response of the steel cylindrical liquid storage tank depends sensitively on the fluid-structure interaction and the vibration of the tank structure and necessitates clarification for the safety of the tank structure. This paper presents the results of shaking table tests performed to examine the dynamic behavior of a scaled cylindrical steel tank model considering the presence or not of fixed roof and added mass at the top of the tank for various fluid levels. The test results confirm the occurrence of both beam-type and oval-type vibration modes and show that the larger content of liquid inside the container amplified the acceleration along the height of the cylindrical tank. The oval-type vibration modes are seen to be more dominant in case of large water-to-structure mass ratio.