• Title/Summary/Keyword: Shaft vibration

Search Result 651, Processing Time 0.027 seconds

Rotordynamics Design Sensitivity Analysis of an APU Gas Turbine having a Spline Shaft Connection (스플라인-축 연결을 갖는 보조동력장치 가스터빈의 로터다이나믹 설계민감도 해석)

  • Lee, An-Sung;Ha, Jin-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.593-598
    • /
    • 2000
  • In this paper the critical speed analysis and design sensitivity investigation are carried out with an APU(auxiliary power unit) gas turbine having a spline shaft connection. The DDM(direct differential method) is directly applied to formulate the critical speed design sensitivity problem of a general nonsymmetric-matrix rotor-bearing system. The design sensitivity analysis have shown that the critical speed change rate to the support modeling of the spline shaft connection point is extremely negligible, and thereby its design uncertainty is lifted. It has also been confirmed that the critical speeds up to the 4th are not sensitive to the design stiffness coefficients of 4-main bearings or supports, including two air foil bearings. Further, the critical speed change rate to the shaft-element length have shown quantitatively that the spline shaft has some limited influence on the 4th critical speed.

  • PDF

Abnormal High Vibration by the Accumulated Oil Carbide at the Exhaust Casing Bearing Air Seal of a Gas Turbine (가스터빈 EXHAUST 케이싱 베어링 AIR SEAL에서 오일 탄화물 축적에 의한 이상 진동)

  • Kim, Dong Kwan;Park, Sangho;Koo, Jae Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.464-469
    • /
    • 2012
  • In the electric power plant, the shaft vibration is one of the very important point for successful long-term operation, because the high reliability unit needs stable rotor dynamic system. However, in the one combined cycle power plant, the abnormal high level shaft vibration analyzed 1 X on the journal bearing has been several times suddenly tripped of Gas turbine due to the accumulated oil carbide. This paper describes how to countermeasure the abnormal shaft vibration in the journal bearing of Gas turbine exhaust bearing in the field.

  • PDF

A Study of Bearing Oil Whip Treatment in 300MW Steam Turbine with Oil Temperature Change (300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구)

  • Hwang, Dal-Y.;Kim, Hwa-Y.;Moon, Seung-J.;Lee, Jae-H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.244-247
    • /
    • 2008
  • The phenomena of oil whip in steam turbine takes place for the un-balancing force between rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, It needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

Torsional Stress Prediction of Turbine Rotor Train Using Stress Model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

Torsional stress prediction of turbine rotor train using stress model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF

Analysis of High Vibration in Nuclear Turbine-Generator (원자력 발전소 터빈-발전기 고진동 저감에 대한 고찰)

  • Lee, Woo-Kwang;Ko, Woo-Sig;Kim, Kye-Yean;Koo, Jae-Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.46-50
    • /
    • 2007
  • The nuclear power plant's turbine-generator system had been suffered form some problems, such as high shaft vibration, generator casing crack, stator coil water leakage, high $H_2$ gas consumption rate. Those kinds of problems were related to high vibration. So nuclear plant decided to replace generator in order to reduce rotor high vibration and high thermal sensitivity. A series of effort to reduce turbine-generator vibration was carried out as followings, first of all, replacement of generator, analysis of turbine-generator vibration, LP B rotor shop balancing, improvement of LP B/Gen coupling run-out, improvement of Generator basement and field balancing. Finally the nuclear turbine-generator's shaft vibration was reduced below $60{\mu}m$ from over $200{\mu}m$ which is very excellent vibration in nuclear turbine-generator in Korea.

  • PDF

A Study on the Torsional Vibration Measurement of the Horizontal Shaft with Disks (단을 가진 수평축의 비틀림진동 측정에 관한 연구)

  • 박일수;안찬우;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.3-8
    • /
    • 1997
  • This parer was presented for the experimental results of torsional vibrations of the horizontal rotating shaft with three disks. The torsional vibrations meter used is a laser system for non-contact measurement of torsional angular vibration velocity and torsional angular vibration displacement. The distance between the disks war changed; the one that had 76mm of disk distance war called basic model, and another that had 106mm of disk distance wide model, and other that had 46mm of disk distance narrow model. In each model, outer diameter of disk was 40mm. And 45mm, or 50mm was also used to extend the effective range of frequencies. The angula vibration displacement and the angular vibration velocity in its torsional vibration were measured to obtain the stable and the unstable regions.

  • PDF

Vibrational analysis of driveline for reducing differential gear vibration (차동 기어의 진동 저감을 위한 동력 전달계 진동 해석)

  • 최은호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.96-102
    • /
    • 1997
  • Eigenvalue analysis of vibration mode and an analysis by frequency response among the methods of predicting gear noise are related with transmitting sound of vibration. In this study we intended to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration in differential gear by applying flexible coupling.

  • PDF

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing (정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험)

  • Lee, Donghyun;Kim, Byungock;Jung, Junha;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.