• Title/Summary/Keyword: Shaft system

Search Result 1,134, Processing Time 0.029 seconds

Ultimate Load and Load Distribution of Ground Anchor in Waste Landfill (쓰레기 매립층에서 그라운드 앵커의 극한하중 및 하중분포)

  • Kim, Sung-Kyu;Cho, Kyu-Wan;Kim, Woong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1434-1441
    • /
    • 2005
  • For anchored system applications, each ground anchor is tested after installation and prior to being put into service to loads that exceed the design. This load testing methodology, combined with specific acceptance criteria, is used to verify that the ground anchor can carry the design load without excessive deformations and that the assumed load transfer mechanisms have been properly developed behind the assumed critical failure surface. After acceptance, the ground anchor is stressed to a specified load and the load is locked-off. The two types of load tests conducted during the research program included performance test and creep test which were carried out in accordance with testing procedures by AASHTO(AASHTO 1990) and FHWA(Weatherby 1998) at Samsung-Dong 00 Site. Form the measurements, ultimate load and creep rate of anchors are proposed for straight shaft pressured grouted anchors in waste landfill. The load distribution on the grout was obtained from the measured strain data at each fraction of the ultimate load during the load tests.

  • PDF

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Study on measuring the low torque on an air tool operating at 100,000 RPM class (100,000 RPM급으로 회전하는 에어공구에서의 저토오크 측정에 관한연구)

  • Kim, Eun-Jong;Cho, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2018-2023
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM at the unloaded state with the low torque. An experimental apparatus is developed as the power absorption type dynamometer. Inlet static pressure, flow rate, RPM and force are measured simultaneously. Torque, output power and specific output power are obtained. Those experimental results are compared with the experimental results obtained on a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000RPM. In order to use the commercial dynamometer, a reduction gear is applied to the shaft of dynamometer. Torque and power obtained on the commercial dynamometer show 50% lower than those obtained on a power absorption type dynamometer, because the inertia force is added to the air tool rotor for the braking system. Moreover, the starting RPM on the commercial dynamometer is less than 40,000RPM. From the compared results, they show that the power absorption type dynamometer should be applied for measuring the performance of an air tool operating at low torque and high RPM.

  • PDF

A Study on 3D Modeling & Stress Analysis of Helical Conical Involute Gear (헬리컬 코니칼 인볼류트기어의 3D 모델링과 치면 응력해석에 관한 연구)

  • Kang, Jai-Hwa;Lee, Do-Young;Kim, Jun-Sung;Xu, Zhe-Zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Generally, marine transmissions contain straight shafts and helical gears, meaning that enginerooms require more space. In order to guarantee a levelengine space for conical involute gears or beveloid gears, both of which are important machine parts, a conical gear was used to replace the traditional cylinder gear. Owing to weak points such as the point contact phenomenon of the teeth, a limitation of the width of each tooth in terms of the addendum, the variational modification coefficient,and the difficulty of processing, research about conical involute gears remains at a standstill. Along with the increasing number of applications of conical involute gears, research on conical gear design technology is necessary. In this paper, in an effort to enhance conical gear design technology, research on the 3D modeling and stress analyses of helical conical involute gears were done.

An Analysis of the Thermal Deformation of the Main Spindle for Small and Precision Lathe (소형 정밀 선반용 주축의 열 변형 해석)

  • Jian, Jin;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Multi-function and miniaturization of the medical equipment and tele-communication systems need small and high precision machined parts. For the economic machining of the small size workpiece it should be machined by small and high precision machine tools with high speed machining. The belt type driving system in turning lathe has a limitation of spindle speeds because of the vibrations from driving mechanism, built-in type of driving mechanism is used to reduce the vibration. However, the main spindle of the built-in motor is connected directly to the motor, so the heat generation of the motor and bearing makes bad influence of the accuracy of machine tools. In this study, the analysis of heat generation from motor and bearings supporting main spindle and experiment were carried out. The results of theoretical simulation of temperature and deformation of the main spindle are good agreement with those of measured.

  • PDF

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

Optimum Cam Profile Design and Experimental Verification on an OHC Type Cam-valve System (OHC형 캠-밸브 기구의 최적 캠 형상설계 및 실험적 검증)

  • 김성훈;김원경;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2049-2058
    • /
    • 1992
  • In this work, a 6 degree of freedom lumped mass model is constructed for an OHC-type cam valve train analysis, and the model is verified experimentally. Using the verified model, an optimum cam profile is designed to minimize the maximum contact force between cam and follower under the constraints such as cam lift and cam event angle. The designed cam was carefully machined and tested experimentally. As operating the designed cam shaft on the test rig, the valve motion was precisely measured with laser displacement meter and the contact force was indirectly monitored by measuring strain at a certain point of the finger follower. Judging from the model simulation and experiment results, the maximum contact force can be reduced as much as more than 16.7 percent under maintaining the original valve flow area by adopting the optimum cam profile.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System (Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구)

  • Mun, Ji-Hun;Shin, Yong-Hyun;Kim, Tae-Sung;Kang, Sang-Woo
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

A study on the calculation of Synthesized torsional vibration for the marine diesel engine shafting by the modal analysis method (모오드 해석법에 의한 박용디젤기관 추진축계의 합성 비틀림 진동계산에 관한 연구)

  • 이강복;전효중;남청도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.159-169
    • /
    • 1985
  • The calculation of torsional vibration for marine diesel engine propulsion shafting is normally carried out by equalizing exciting energy to damping energy, or using the dynamic magnifier. But, with these methods, the vibration amplitudes are calculated only for resonance points and vibration amplitudes of other running speeds of engine are determined by the estimation. Recently, many energy-saving ships have been built and on these ships, two-stroke, supercharged, super-long stroke diesel engines which have a small number of cylinders are usually installed. In these cases, the first order critical-torsional vibrations of these engine shaftings appear ordinarily near the MCR speed and the stress amplitudes of their vibration skirts exceed the limit stress defined by the rules of classification society. To predict the above condition in the design stage, the synthesized vibration amplitudes of all orders which are summed up according to their phase angles must be calculated from the drawings of propulsion shaft systems. In this study, a theoretical method to fulfill the above calculation is derived and a computer program is developed according to the derived method. And a shafting system of two-stroke, super-long stroke diesel engine which was installed in a bulk carrier is analyzed with this method. The measured values of this engine shafting are compared with those of calculated results and they show a fairly good agreement.

  • PDF