• Title/Summary/Keyword: Shaft Stress

Search Result 301, Processing Time 0.03 seconds

Properties of the material on stainless steel propeller shaft with the weld working (스테인리스강 프로펠러축의 가공에 따른 재질특성에 관한 연구)

  • Son, Yeong-Tae;Choung, Kwang-Gyo;Lee, Myeong-Hoon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.24
    • /
    • pp.4-20
    • /
    • 2008
  • Stainless steel 304 or stainless steel 630 types using propeller shaft of a small ship or a FRP fishing boat generally restrain localization corrosion and abrasion damage occurrence to shaft bearing or grand packing contact. In general, the residual stress which remains after welding or heat treatment in material can cause the stress concentration or localization corrosion. In case of small ship, stainless steel such as STS304 has long been used for propeller shaft. Meanwhile, crew of small ship tend to reuse damaged propeller shaft after repair by welding and performing heat treatment to save cost. However, it was found that reused propeller shaft by repair often caused troubles in ship's operation. In this study, the basic guideline for maintenance and treatment of propeller shaft are investigated. From the results of investigation, remarkable deterioration of the material properties and corrosion resistance on the welded work part was observed.

  • PDF

The Causes of Bolt Breakage During the Tightening of Impellers in Water Jet Propulsion Systems (워터제트 추진기 임펠러 체결용 볼트파손 원인 분석 연구)

  • Jung, Sang-Jin;Oh, Shini Il;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.48-53
    • /
    • 2019
  • A water jet propeller is a key component that generates propulsion during the start of a naval vessel. When failure or breakage occurs, the vessel cannot operate. Recently, a flow analysis and structural analysis were conducted to understand the cause of damage to a bolt on a water jet. In particular, the stress and strain acting on the fastening bolt (impeller shaft and tail shaft) were examined to determine the extent of misalignment between the impeller shaft and the tail shaft of the water jet propeller. The study determined that stress and strain were concentrated on the impeller shaft and the tail shaft bolt. The alignment of the propeller impeller shaft and the tail shaft increased significantly in response to the tail shaft bolt. Failure of the tail shaft bolt fastening can lead to misalignment between the impeller shaft and the tail shaft.

The Study for Reduction of Stress Concentration at the Stepped Shaft According to Two Types of External Force (하중 종류에 따른 다단축의 응력 집중 완화에 대한 연구)

  • Park, I.S.;Shim, J.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this study, Finite Element Analysis have been adopted to analyze reducing stress effect and used to induce the sensitivity of design parameter on various techniques which was used for reducing stress. And so it can be utilized as a data to design on similar model. The effect of reducing stress with respect to change of relief groove radius can be increased by 27.3~18.2 % more than radius of fillet. And if a shoulder fillet radius is larger, additional reducing stress by relief groove radius is not obtained. And there was only little effect on reducing stress by changing the center point of groove radius along horizontal direction. In the case that undercut radius is 1.5mm, Max. Equivalent stress is reduced by 5.71% under bending force and 11.11% under torsion. The best effect of reducing stress at undercut model was yielded when the undercut radius is a forth of difference of stepped shaft radius.

Investigation of Structural Safety of Monobloc Tubular Drive Shaft Subjected to Torque (비틀림 모멘트가 부가되는 일체형 중공 드라이브 샤프트의 구조 안정성 분석)

  • Guk, Dae-Sun;Ahn, Dong-Gyu;Lee, Ho-Jin;Jung, Jong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1073-1080
    • /
    • 2015
  • A drive shaft is used to transmit torque and rotation through the connection of components of a drive train. Recently, a monobloc drive shaft without welding regions is developed to improve the safety of the drive shaft. The drive shaft bears the shear stress induced by torque. The objective of this paper is to investigate into the structural safety of a monobloc tubular drive shaft subjected to torque. Elasto-plastic finite element (FE) analysis is performed to estimate the deformation behavior of the drive shaft and stress-strain distribution in the drive shaft. Several techniques are used to create finite element (FE) model of the monobloc tubular drive shaft subjected to torque. Through the comparison of the results of FE analyses with those of experiments from the viewpoint of rotational angle, appropriate correction coefficients for different load conditions are estimated. The safety of the tubular drive shaft is examined using the results of FE analyses for different load conditions. Finally, it is noted that the designed tubular drive shaft has a sufficient structural safety.

Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles (전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향)

  • Lee, Dong-Hyung;Choi, Don-Bum;Kang, Seong-Woong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

Prediction of Failure Stress of Rocker Arm Shaft using FEM and Striation (FEM과 Striation을 이용한 로커 암 축의 파손응력 추정)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.84-90
    • /
    • 2007
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure stress analysis of rocker arm shaft is needed. Because more than 30% of vehicles investigated have been fractured. Failure stress analysis is classified into an naked eyes, microscope, striation and X-ray fractography etc. Failure stress analysis by using striation is already established technology as means for seeking cause of fracture. But, although it is well known that striation spacing corresponds to the crack growth rate da/dN, it is not possible to determine ${\sigma}_{max}\;and\;{\sigma}_{min}$ under service loading only from striation spacing. This is because the value of striation spacing is influenced not only by ${\Delta}K$ but also by the stress ratio R. In the present paper, we determine the stress ratio using orthogonal array and ANOVA, and propose a prediction method of failure stress which is combined with FEM and striation.

A Study on the Design of Composites Shaft for Small Ship by Filament Winding Process (필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계에 관한 연구)

  • 배창원;임철문;왕지석;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.193-196
    • /
    • 2001
  • The purpose of this study is the design of composite shaft which is wound by Filament Winding method. Classical laminated plate theory was used for analyzing the stress, and for structure design. The diameter and thickness of composite shaft were calculated by this theory. The result that if tensile stress was zero, torsion stress was a certain value below 0.4(diameter rate) and torsion strength was the highest value on $45^{\circ}C$(winding angle). In case of $90^{\circ}C$(winding angle), we have to consider the torsional monent when the composites shaft was load.

  • PDF

A Study on the Design of Composites Shaft for Small Ship by Filament Winding Process (필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계에 관한 연구)

  • 배창원;임철문;왕지석;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.140-145
    • /
    • 2001
  • The purpose of this study is the design of composite shaft which is wound by Filament Winding method. Classical laminated plate theory was used for analyzing the stress, and for structure design. The diameter and thickness of composite shaft were calculated by this theory. The result that if tensile stress was zero, torsion stress was a certain value below 0.4(diameter rate) and torsion strength was the highest value on 45$^{\circ}$(winding angle). In case of 90$^{\circ}$(winding angle), we have to consider the torsional moment when the composites shaft was load.

  • PDF

The Optimal Design Technique for Improving Durability of Spline Shaft of the Self Propelled Artillery' Generator (자주포 발전기 스플라인 축 내구성 향상을 위한 최적 설계 기법)

  • Kim, Byeong Ho;Kang, Hyen Jae;Park, Young Il;Seo, Jae Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.485-491
    • /
    • 2015
  • In this study, the experimental and analytical investigation on structural integrity evaluation of spline shaft of self propelled artillery' generator were carried out. For this work, macro and microstructure fractography of spline shaft were observed. According to the results of the structure analysis and simulation, the shaft was redesigned and optimized. To improve the stiffness and shear stress, the material was changed from the SNCM220 to SNCM439 and surface roughness and protective coating treatment are changed to increase the stress relaxation, respectively. From the result of the torsion test of shaft and accelerated life test of generator, the shaft of a SNCM439 with heat-treatment(Q/T) and electroless nickel plating was superior quality reliability and durability than the others. Therefore, modeling and simulation corresponded well with the experimental result and structural safety was confirmed by generator performing.