• 제목/요약/키워드: Shadow evaporation

검색결과 27건 처리시간 0.037초

Shadow Modeling using Z-map Algorithm for Process Simulation of OLED Evaporation

  • Lee, Eung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.487-490
    • /
    • 2004
  • In order to simulate OLED evaporation process, modeling of directional distribution of the vaporized organic materials, film thickness distribution profile and pattern-mask shadow effect are required In accordance with many literatures; all of them except shadow effect modeling are studied and developed. In this paper, modeling algorithm of evaporation shadow is presented for process simulation of full-color OLED evaporating system. In OLED evaporating process the offset position of the point cell-source against the substrate rotation axis and the usage of the patterned mask are the principal causes for evaporation shadow. For geometric simulation of shadow using z-map, the film thickness profile, which is condensed on a glass substrate, is converted to the z-map data. In practical evaporation process, the glass substrate is rotated. This physical fact is solved and modeled mathematically for z-map simulation. After simulating the evaporation process, the z-map data can present the shadow-effected film thickness profile. Z-map is an efficient method in that the cross-sectional presentations of the film thickness profile and thickness distribution evaluation are easily and rapidly achieved.

  • PDF

Electrode-Evaporation Method of III-nitride Vertical-type Single Chip LEDs

  • Kim, Kyoung Hwa;Ahn, Hyung Soo;Jeon, Injun;Cho, Chae Ryong;Jeon, Hunsoo;Yang, Min;Yi, Sam Nyung;Kim, Suck-Whan
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1346-1350
    • /
    • 2018
  • An electrode-evaporation technology on both the top and bottom sides of the bare vertical-type single chip separated from the traditional substrate by cooling, was developed for III-nitride vertical-type single chip LEDs with thick GaN epilayer. The post-process of the cooling step was followed by sorting the bare vertical-type single chip LEDs into the holes in a pocket-type shadow mask for deposition of the electrodes at the top and bottom sides of bare vertical-type single chip LEDs without the traditional substrate for electrode evaporation technology for vertical-type single chip LEDs. The variation in size of the hole between the designed shadow mask and the deposited electrodes owing to the use of the designed pocket-type shadow mask is investigated. Furthermore, the electrical and the optical properties of bare vertical-type single chip LEDs deposited with two different shapes of n-type electrodes using the pocket-type shadow mask are investigated to explore the possibility of the e-beam evaporation method.

샤도우 증착 효과를 이용한 마이크로 채널내 측벽 전극 제작 (Fabrication of electrodes on mcirochannel side wall using shadow evaporation effect)

  • 강길환;김규만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1462-1465
    • /
    • 2004
  • A new method to fabricate metal electrodes on side wall of the microchannel is presented. Coulter counter allows to count the number of cell passing through the microchannel by detecting impedance variation between two electrodes. The relative position of two electrodes is important for sensitivity of impedance measurement. 100nm thick Al electrodes are deposited on the channel side wall by means of shadow evaporation.

  • PDF

국부증착용 마이크로 샤도우 마스크 제작 (Fabrication of Miniaturized Shadow-mask for Local Deposition)

  • 김규만;유르겐부르거
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.152-156
    • /
    • 2004
  • A new tool of surface patterning technique for general purpose lithography was developed based on shadow mask method. This paper describes the fabrication of a new type of miniaturized shadow mask. The shadow mask is fabricated by photolithography and etching of 100-mm full wafer. The fabricated shadow mask has over 388 membranes with apertures of micrometer length scale ranging from 1${\mu}{\textrm}{m}$ to 100s ${\mu}{\textrm}{m}$ made on each 2mm${\times}$2mm large low stress silicon nitride membrane. It allows micro scale patterns to be directly deposited on substrate surface through apertures of the membrane. This shadow mask method has much wider choice of deposit materials, and can be applied to wider class of surfaces including chemical functional layer, MEMS/NEMS surfaces, and biosensors.

전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발 (Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique)

  • ;최재원;류시정;박정환;류상완;김정구;송운;정연욱
    • Progress in Superconductivity
    • /
    • 제10권2호
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF

Structure of Deposition Chamber using Belt Source Evaporation Techniques in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.186-189
    • /
    • 2007
  • The organic deposition chamber has been developed using belt source evaporation techniques for the first time. The deposition chamber is consisted of the belt source, organic vapor source, and the mask alignment assembly. The rollers operate for the thin metal belt to continuously move with the automatic tension control. It has been proved for the belt source evaporation easy to operate and the alignment of the substrate/shadow mask becomes so simple to use in AMOLED manufacturing industry.

  • PDF

Two Dimensional Gold Nanodot Arrays Prepared by Using Self-Organized Nanostructure

  • Jung Kyung-Han;Chang Jeong-Soo;Kwon Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.246-250
    • /
    • 2006
  • Highly ordered gold nanodot arrays have been successfully obtained by vacuum evaporation using an anodic aluminum oxide (AAO) as a shadow mask. An AAO mask with the thickness of 300 um was prepared through an anodization process. The structure of the nanodot arrays was studied by a field- emission scanning electron microscope (FE-SEM) equipped with an energy dispersive spectrometer (EDS). A tapping mode atomic force microscope (AFM) was employed for studies of height and phase feature. The nanodot arrays were precisely reproduced corresponding to the hexagonal structure of the AAO mask in a large area. In the gold nanodot arrays, the average diameter of dots is approximately the same as the AAO pore size in the range from 70 um to 80 nm and 100 nm center-to-center spacing. EDS analysis indicated that the gold dots were almost entirely consisted of gold, a highly demanded material.

제작된 수직 마이크로미러 어레이의 특성 측정 (Characteristics measurement of fabricated micromirror array with vertical springs)

  • 신종우;김용권;박진구;신형재;문재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.618-620
    • /
    • 1997
  • A $50{\times}50{\mu}m^2$ aluminum micromirror array is fabricated using shadow evaporation process. The fabrication process is very simple with use of shadow evaporation process, and the micromirror array has a high fill-factor. The static and dynamic characteristics such as deflection angle vs. applied voltage, step response, and frequency response are measured using a contact free optical measurement technique. The downward threshold voltage was 8 V, step response time was $13.5{\mu}s$ when 32 V step voltage applied, and a resonance observed at 11kHz. The lifetime of micromirror with anti-stiction coating was tested and micromirror operated successfully over 200 million cycles of touch-down operations.

  • PDF

PM OLED Fabrication with New Method of Metal Cathode Deposition Using Shadow Mask

  • Lee, Ho-Chul;Kang, Seong-Jong;Yi, Jung-Yoon;Kim, Ho-Eoun;Kwon, Oh-June;Hwang, Jo-Il;Kim, Jeong-Moon;Roh, Byeong-Gyu;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.987-989
    • /
    • 2006
  • 1.52" $130(RGB){\times}130$ full color PM OLED device with $70\;{\mu}m{\times}210\;{\mu}m$ of sub-pixel pitch was fabricated using shadow mask method for metal cathode deposition. Instead of conventional patterning process to form cathode separator via photolithography, regularly patterned shadow mask was applied to deposit metal cathode in this OLED display. Metal cathode was patterned via 2-step evaporation using shadow mask with shape of rectangular stripe and its alignment margin is $2.5\;{\mu}m$. Technical advantages of this method include reduction of process time according to skipping over photolithographic process for cathode separator and minimizing pixel shrinkage caused by PR cathode separator as well as improving lifetime of OLED device.

  • PDF

Organic field-effect transistors with step-edge structure

  • Kudo, Kazuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.91-93
    • /
    • 2008
  • The organic field-effect transistors with step-edge structure were fabricated. Source and drain electrodes were obliquely deposited by vacuum evaporation. The step-edge of the gate electrode serve as a shadow mask, and the short channel is formed at the step-edge. The excellent device performances were obtained.

  • PDF