• Title/Summary/Keyword: Sex peptide

Search Result 18, Processing Time 0.029 seconds

Neurokinin B-related Peptide Suppresses the Expression of GnRH I, Kiss2 and tac3 in the Brain of Mature Female Nile tilapia Oreochromis niloticus

  • Jin, Ye Hwa;Park, Jin Woo;Kim, Jung-Hyun;Kwon, Joon Yeong
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • Neurokinin B (NKB) and neurokinin B related peptide (NKBRP) belong to tachykinin peptide family. They act as a neurotransmitter and/or neuromodulator. Mutation of NKB and/or its cognate receptor, NK3R resulted in hypogonadotropic hypogonadism in mammals, implying a strong involvement of NKB/NK3R system in controlling mammalian reproduction. Teleosts possess NKBRP as well as NKB, but their roles in fish reproduction need to be clarified. In this study, NKB and NKBRP coding gene (tac3) was cloned from Nile tilapia and sequenced. Based on the sequence, Nile tilapia NKB and NKBRP peptide were synthesized and their biological potencies were tested in vitro pituitary culture. The synthetic NKBRP showed direct inhibitory effect on the expression of GTH subunits at the pituitary level. This inhibitory effect was confirmed in vivo by means of intraperitoneal (ip) injection of synthetic NKB and NKBRP to mature female tilapia (20 pmol/g body weight [BW]). Both NKB and NKBRP had no effect on the plasma level of sex steroids, E2 and 11-KT. However, NKBRP caused declines of expression level of GnRH I, Kiss2 and tac3 mRNAs in the brain while NKB seemed to have no distinct effect. These results indicate some inhibitory roles of NKBRP in reproduction of mature female Nile tilapia, although their exact functions are not clear at the moment.

A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster

  • Lee, Hyunjin;Choi, Hyun Woo;Zhang, Chen;Park, Zee-Yong;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.573-579
    • /
    • 2016
  • During copulation, male Drosophila transfers Sex Peptide (SP) to females where it acts on internal sensory neurons expressing pickpocket (ppk). These neurons induce a post-mating response (PMR) that includes elevated egg-laying and refractoriness to re-mating. Exactly how ppk neurons regulate the different aspects of the PMR, however, remains unclear. Here, we identify a small subset of the ppk neurons which requires expression of a pre-mRNA splicing factor CG3542 for egg-laying, but not refractoriness to mating. We identify two CG3542-ppk expressing neurons that innervate the upper oviduct and appear to be responsible for normal egg-laying. Our results suggest specific subsets of the ppk neurons are responsible for each PMR component.

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly (노랑초파리 난황형성과정 제어 신경 메커니즘)

  • Kim, Young-Joon;Zhang, Chen
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2022
  • Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.

Role of the insulin-like growth factor system in gonad sexual maturation in Pacific oyster Crassostrea gigas

  • Moon, Ji-Sung;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.3.1-3.8
    • /
    • 2020
  • Background: The IGF system plays important roles in controlling growth, development, reproduction, and aging of organisms. Methods: To estimate maturation of the Pacific oyster Crassostrea gigas, we investigated the expression of insulin-like growth factor (IGF) system components and sex-specific genes. To determine the role of the IGF system in the growth and spawning period of female and male oysters, we examined mRNA expression levels of the C. gigas insulin receptor-related receptor (CIR), IGF binding protein complex acid labile subunit (IGFBP_ALS), and molluscan insulin-related peptide (MIP), as well as those of vitellogenin (Vg) and receptor-type guanylate cyclase (Gyc76C) in gonads of C. gigas collected between April and October, when sex can be determined visually in this species. Results: We found that MIP, IGFBP_ALS, and CIR mRNA expression levels were dependent on sex and month and were greater in males than in females. CIR and Vg mRNA expression levels were very similar among females, whereas IGF system components and Gyc76C were very similarly expressed among males. The highest expression values were observed in May, when oysters are mature; CIR and Vg mRNA expression levels were highest in females, and those of MIP, IGFBP_ALS, CIR, and Gyc76C were highest in males. Interestingly, we observed a 1:1 proportion of females to males during this period. Conclusion: Our results suggest that IGF system components, as well as Vg and Gyc76C, are associated with sexual maturation in C. gigas.

Prognostic Value of Prepro-Gastrin Releasing Peptide in Lung Cancer Patients; NCI-Prospective Study

  • Shafik, Nevine F;Rahoma, M;Elshimy, Reham AA;El kasem, Fatma M Abou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5179-5183
    • /
    • 2016
  • Background: Prior series investigated the expression of prepro-gastrin releasing peptide (prepro-GRP) in the peripheral blood of lung cancer patients. Our aim was to assess any prepro-GRP role as a prognostic factor for small cell lung cancer (SCLC) and NSCLC and correlations with clinical presentation and treatment outcome. Methods: A prospective study was conducted during the time period from the beginning of January 2012 till the end of January 2014. Prepro-GRP expression was analysed using a nested RT-PCR assay in peripheral blood of 62 untreated lung cancer patients attending the National Cancer Institute (NCI), Cairo University, and 30 age and sex matched healthy volunteers. Results: Among the 62 lung cancer cases, there were 24 (38.7%) SCLC, and 38 (61.3%) NSCLC (10 squamous cell carcinomas, 12 adenocarcinomas, 11 large cell carcinomas, 4 undifferentiated carcinomas, and 1 adenosquamous carcinoma). Twenty six patients (41.9%) were prepro-GRP positive. Prepro-GRP expression was higher (58.3%) among SCLC patients compared to NSCLC (squamous cell carcinoma (15.4%), large cell carcinoma (36.4%), and adenocarcinoma (25%)). Mean OS among prepro-GRP negative cases was longer than that among preprogastrin positive cases (17.6 vs 14.9 months). The mean PFS durations among preprogastrin negative versus positive cases were 7.7 vs 4.6 months (p= 0.041). No difference in response to chemotherapy was identified between the groups (p=0.983). Conclusion: Prepro-GRP is suggested to be a useful prognostic marker for lung cancer patients, especially with the fast- growing, bad prognostic SCLC type. More studies should aim at detailed understanding of the mechanisms of prepro-GRP action and its use in monitoring the response to treatment in a larger cohort.

Expression of Gonadotropin-Releasing Hormone Gene in Mouse Fetal Ovary during Gonad Differentiation (생쥐의 생식소 분화과정중 난소내 Gonadotropin-Releasing Hormone 유전자의 발현)

  • 윤성희
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.189-202
    • /
    • 1997
  • The hypothalamic peptide GnRH plays a central role in the regulation of the mammalian reproductive axis. Recent studies suggested that GnRH stimulates or inhibits the ovarian steroidogenesis and gametogenesis directly. Our previous report indicated that GnRH gene is expressed in adult rat ovary as well as in hypothalamus and that the expressed GnRH may induce the follicular atresia and apoptosis of ovarian granulosa cells in rat. Therfore, we studied whether GnRH gene is expressed in the mouse fetal ovary, when the germ cells are degenerating by apoptosis during gonad diffeerentiation. Mouse fetal gonads were obtained on the 12, 15,18 and 20th day of gestation from the mother mice superovulated (10 IU PMSG and 10 IU hCG) and mated. The morphological changes of fetal ovaries were examined histochemically by hematoxylin-eosin staining. The fetal sex was confirmed by PCR methods for sexing. RT-PCR methods were used to examine the expression of GnRH gene and the sex steroid hormones were determined by conventional radioimmunoassays. The levels of estradiol (E) and progesterone (P) were increaseduntil 18th day of gestation and then E was decreased just before parturition. The morphological changes of fetal gonadal tissue sections showed the ovarian development and coincided with the result of PCR analysis for sexing using ovary- or testis- specific oligonucleotide primers. Immunoreactive GnRH in placenta was decreased gradually until the end of gestation but fetal brain and ovarian GnRH were increased. The level of GnRH gene expression was increased during fetal ovarian development from 12 till 18th day and decreased suddenly on 20th day just before birth. From these results, it is suggested that ovarian GnRh may play a regulatory role on the germ cell differentiation of fetal ovary.

  • PDF

The Effects of DHEA on the Antiobesity and Obese Gene Expression in Lean and Genetically Obese(ob/ob) Mice (DHEA의 항비만 효능 및 ob 유전자(leptin)의 발현에 미치는 영향)

  • 정기경;신미희;한형미;강석연;김태균;강주혜;문애리;김승희
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2000
  • Leptin, the product of the ob gene, is a small peptide molecule synthesized by white adipocytes with an important role in the regulation of body fat and food intake. Based on the evidence that synthesis of leptin is regulated by female sex hormone, estrogen, this present study was investigated whether sex hormone precursor DHEA, can regulate obese gene expression in lean and genetically obese (ob/ob) mice. Antiobesity activity of DHEA was evaluated by determining body weight, food consumption, epididymal fat weight and serum levels of cholesterol and triglyceride in ICR, C57BL/6J, and ob/ob mice. The treatment of C57BL/6J lean and obese mice with a diet containing 0.3% and 0.6% DHEA resulted in lowered rates of weight gain in comparison to non-treated mice, although much greater response was found in the obese mice. All other concentrations of DHEA (0.015%, 0.06%, 0.15%, 0.3%) except the highest one(0.6%) showed no significant effects on weight gain in ICR mice. Food consumption was significantly decreased in all mice treated with 0.6% DHEA, whereas it was not decreased in ICR mice at lower concentrations than 0.6% DHEA. DHEA decreased significantly epididymal adipose tissue weight and serum triglyceride levels dose dependently in lean and obese mice. However serum cholesterol levels were decreased at lower concentrations than 0.15% DHEA and increased at concentrations of 0.3% and 0.6% DHEA in lean and obese mice. These increases in serum cholestrol levels at high concentrations of DHEA might result from the fact that DHEA has a cholesterol moiety thereby interfered the assay system. As an approach to elucidate the mechanism for antiobesity activity of DHEA, we examined mRNA levels of obese gene in the adipocyte and obese gene product (leptin) in the serum. The results showed that DHEA did not affect obese gene expression in ICR and C57BL/6J mice. Therefore, we concluded that antiobesity activity of DHEA was not modulated by obese gene expression.

  • PDF

Pheromone Biosynthesis Activating Neuropeptide (PBAN) in Insects (곤충의 페로몬 생합성 활성화 신경펩타이드(PBAN))

  • Choi, Man-yeon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.15-28
    • /
    • 2022
  • Neuropeptides produced in neurosecretory cells are the largest group of insect hormones. They regulate various physiological functions, such as fat body homeostasis, feeding, digestion, excretion, circulation, reproduction, metamorphosis, and behavior throughout all life stages. The PRXamide peptide family (X, a variable amino acid) is a well-characterized neuropeptide component with a common amino acid sequence, PRXamide (NH2), at the C-terminal end conserved across Insecta. The PRXamide peptides are classified into three subfamilies, each having diverse biological roles in insects: (1) pyrokinin (PK) includes the pheromone biosynthesis activating neuropeptide (PBAN) and the diapause hormone (DH), (2) the capability (CAPA) peptides, and (3) the ecdysis-triggering hormone (ETH). PBAN as a member of PK subfamily was first identified to stimulate pheromone biosynthesis in moths three decades ago. Since then, PBAN peptides have been extensively studied by various research groups from a broad spectrum of arthropods. In this paper, we briefly review insect PBAN molecules with emphasis on gene structure and expression, signal transduction, physiological mechanism in sex pheromone biosynthesis, and application for pest management.

Kisspeptins (KiSS-1): Essential Players in Suppressing Tumor Metastasis

  • Prabhu, Venugopal Vinod;Sakthivel, Kunnathur Murugesan;Guruvayoorappan, Chandrasekharan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6215-6220
    • /
    • 2013
  • Kisspeptins (KPs) encoded by the KiSS-1 gene are C-terminally amidated peptide products, including KP-10, KP-13, KP-14 and KP-54, which are endogenous agonists for the G-protein coupled receptor-54 (GPR54). Functional analyses have demonstrated fundamental roles of KiSS-1 in whole body homeostasis including sexual differentiation of brain, action on sex steroids and metabolic regulation of fertility essential for human puberty and maintenance of adult reproduction. In addition, intensive recent investigations have provided substantial evidence suggesting roles of Kisspeptin signalling via its receptor GPR54 in the suppression of metastasis with a variety of cancers. The present review highlights the latest studies regarding the role of Kisspeptins and the KiSS-1 gene in tumor progression and also suggests targeting the KiSS-1/GPR54 system may represent a novel therapeutic approach for cancers. Further investigations are essential to elucidate the complex pathways regulated by the Kisspeptins and how these pathways might be involved in the suppression of metastasis across a range of cancers.

Clinical Study of Anaphylaxis on Bee-Venom Acupuncture (봉독약침 후 발생한 Anaphylaxis 에 관한 임상적 연구)

  • Hwang, Yoo-Jin;Lee, Byung-Chul
    • Journal of Acupuncture Research
    • /
    • v.17 no.4
    • /
    • pp.149-159
    • /
    • 2000
  • Bee-venom Acupucture has good effect on pain control but We may be anxious about the problem of side-effect. Bee-venom components are composed of phospholipase $A_2$, hyaluronidase, melitin, apamin, MCD peptide, citrate and so on. Especially Apamin, MCD peptide and histamine cause severe reacting that is named Anaphylaxis. Anaphylaxis is a clinical syndrome characterized by the acute system reaction of multiple organ systems to an IgE-mediated immunologic mediator release in previously sensitized individuals. Respiratory and dermatologic manifestations are the most commonly expressed clinical features of anaphylaxis, and a majority of anaphylactic reactions initially appear to be localized to these two systems. Anaphylatic reaction of bee-venom are expressed clinically ulticaria, itching sensation, erythema, dizziness, nausea, hypotension and so on. Especially ulticaria and erythema are end points of increased vascular permeability and vasodilatation at the other extreme of the clinical spectrum, Gastrointestinal mucosal edema and smooth muscle contraction can result in cramping abdominal pain, nausea, and vomiting. Therefore, we have observed anaphylatic reaction of bee-venom in 11 patients, who visited WonKwang University Kunpo Oriental Medical Center, treated bee venom. The results were summarized as follows : 1. The patient distribution ratio, in regard to sex, was shown to be 1 : 2.67 for male to females. In regard to age, it was shown that people in their 30's was the most predominant case, followed by people in their 20's, 30's, 50's and 60's, respectively. 2. When Anaphylaxis was occured, it was observed to abnormality of CBC, LFT, IgE, IgG. 3. In regard to patient condition, it was observed that fatigue was most frequent. 4. In regard to the number of times and quantity of bee venom inj., it was observed that anaphylaxis is most frequent at 7-10 times(1.6-2.0cc) 5. In regard to duration of reaction, it was observed that people in their l0min' was most frequent. In disappearing duration of anaphylaxic reaction, The results showed under 60min lcases(9%), 60-120min 7cases(64%) and 180-240min 3cases(27%). 6. In symptoms of anaphylaxis, The results showed hypotension 8cases(19%), itching sensation 7cases(16%), nausea 4cases(9%), erythema 4cases(9%) and dizziness 4cases(9%). In mentality, The results showed drowsy 8case(73%) and alert 3cases(27%). 7. Generally, patients were treated with Avil, Dexa IM and PDS, peniramine, cimetidine, Q-zyme per os after H/S, N/S inj. $O_2$ was supplied according to patient's symptom. In 1 severe case, Dopamine was iv injected.

  • PDF