Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0121

A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster  

Lee, Hyunjin (School of Life Sciences, Gwangju Institute of Science and Technology)
Choi, Hyun Woo (School of Life Sciences, Gwangju Institute of Science and Technology)
Zhang, Chen (School of Life Sciences, Gwangju Institute of Science and Technology)
Park, Zee-Yong (School of Life Sciences, Gwangju Institute of Science and Technology)
Kim, Young-Joon (School of Life Sciences, Gwangju Institute of Science and Technology)
Abstract
During copulation, male Drosophila transfers Sex Peptide (SP) to females where it acts on internal sensory neurons expressing pickpocket (ppk). These neurons induce a post-mating response (PMR) that includes elevated egg-laying and refractoriness to re-mating. Exactly how ppk neurons regulate the different aspects of the PMR, however, remains unclear. Here, we identify a small subset of the ppk neurons which requires expression of a pre-mRNA splicing factor CG3542 for egg-laying, but not refractoriness to mating. We identify two CG3542-ppk expressing neurons that innervate the upper oviduct and appear to be responsible for normal egg-laying. Our results suggest specific subsets of the ppk neurons are responsible for each PMR component.
Keywords
CG3542; egg-laying; phosphoprotein; pickpocket; post mating response; sex peptide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, H., and Kubli, E. (2003). Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100, 9929-9933.   DOI
2 Monastirioti, M. (1996). Characterization of Drosophila tyramine hydroxylase isolation of mutant flies lacking octopamine maria. J. Neurosci. 76, 3900-3911.
3 Monastirioti, M. (2003). Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264, 38-49.   DOI
4 Mount, S.M., and Salz, H.K. (2000). Pre-messenger RNA processing factors in the Drosophila genome. J. Cell Biol. 150, 37-43.   DOI
5 Nakayama, S., Kaiser, K., and Aigaki, T. (1997). Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol. Gen. Genet. 254, 449-455.   DOI
6 Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A., and Ahn, N.G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487-1502.   DOI
7 Park, S., Sonn, J.Y., Oh, Y., Lim, C., and Choe, J. (2014). SIFamide and SIFamide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol. Cells 37, 295-301.   DOI
8 Peng, J., Chen, S., Busser, S., Liu, H., Honegger, T., and Kubli, E. (2005a). Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 15, 207-213.   DOI
9 Peng, J., Zipperlen, P., and Kubli, E. (2005b). Drosophila sexpeptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr. Biol. 15, 1690-1694.   DOI
10 Pfeiffer, B.D., Ngo, T.-T.B., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., and Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735-755.   DOI
11 Rezaval, C., Pavlou, H.J., Dornan, A.J., Chan, Y.-B., Kravitz, E.A., and Goodwin, S.F. (2012). Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 22, 1155-1165.   DOI
12 Ribeiro, C., and Dickson, B.J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000-1005.   DOI
13 Rodri, O., Lo, I., Labarca, P., Zurita, M., Reynaud, E., and Gene, D. De (2006). Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic. J. Cell. Physiol. 198, 183-198.
14 Sliter, T., Sedlak, B., Baker, F., and Schooley, D. (1987). Juvenile hormone in Drosophila melanogaster: identification and titer determination during development. Insect Biochem. 17, 161-165.   DOI
15 Tang, J., and Rosbash, M. (1996). Characterization of yeast U1 snRNP A protein: identification of the N-terminal RNA binding domain (RBD) binding site and evidence that the C-terminal RBD functions. RNA 2, 1058-1070.
16 Wang, Q., Taliaferro, J.M., Klibaite, U., Hilgers, V., Shaevitz, J.W., and Rio, D.C. (2016). The PSI-U1 snRNP interaction regulates male mating behavior in Drosophila. Proc. Natl. Acad. Sci. USA 113, 5269-5274   DOI
17 Walker, S.J., Corrales-Carvajal, V.M., and Ribeiro, C. (2015). Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr. Biol. 25, 2621-2630.   DOI
18 Yapici, N., Kim, Y., Ribeiro, C., and Dickson, B. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33-38.   DOI
19 Yang, C.-H., Belawat, P., Hafen, E., Jan, L.Y., and Jan, Y.-N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319, 1679-1683.   DOI
20 Yang, C.-H., Rumpf, S., Xiang, Y., Gordon, M.D., Song, W., Jan, L.Y., and Jan, Y.-N. (2009). Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519-526.   DOI
21 Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., and Dickson, B.J. (2010). Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602-1614.   DOI
22 Zhang, Y.Q., Rodesch, C.K., and Broadie, K. (2002). Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142-145.   DOI
23 Zhong, L., Hwang, R.Y., and Tracey, W.D. (2010). Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20, 429-434.   DOI
24 Zhu, M.Y., Wilson, R., and Leptin, M. (2005). A screen for genes that influence fibroblast growth factor signal transduction in Drosophila. Genetics 170, 767-777.   DOI
25 Bownes, M. (1989). The roles of juvenile hormone, ecdysone and the ovary in the controlof Drosophila vitellogenesis. J. Insect Physiol. 35, 409-413.   DOI
26 Adams, C.M., Anderson, M.G., Motto, D.G., Price, M.P., Johnson, W.A., and Welsh, M.J. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143-152.   DOI
27 Aigaki, T., and Fleischmann, I. (1991). Ectopic expression of sex peptide reproductive behavior of female. Neuron 7, 557-563.   DOI
28 Beissbarth, T., Hyde, L., Smyth, G.K., Job, C., Boon, W.-M., Tan, S.-S., Scott, H.S., and Speed, T.P. (2004). Statistical modeling of sequencing errors in SAGE libraries. Bioinformatics 20 Suppl 1, i31-i39.   DOI
29 Bussell, J.J., Yapici, N., Zhang, S.X., Dickson, B.J., and Vosshall, L.B. (2014). Abdominal-B neurons control Drosophila virgin female receptivity. Curr. Biol. 24, 1584-1595.   DOI
30 Carvalho, G.B., Kapahi, P., Anderson, D.J., and Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr. Biol. 16, 692-696.   DOI
31 Gruntenko, N.E., Wen, D., Karpova, E.K., Adonyeva, N. V, Liu, Y., He, Q., Faddeeva, N.V, Fomin, A.S., Li, S., and Rauschenbach, I.Y. (2010). Altered juvenile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 40, 891-897.   DOI
32 Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., and Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291-298.   DOI
33 Choi, H., Lee, S., Jun, C.-D., and Park, Z.-Y. (2011). Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 879, 2991-2997.   DOI
34 Domanitskaya, E. V, Liu, H., Chen, S., and Kubli, E. (2007). The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS J. 274, 5659-5668.   DOI
35 Hasemeyer, M., Yapici, N., Heberlein, U., and Dickson, B.J. (2009). Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511-518.   DOI
36 Isaac, R.E., Li, C., Leedale, A.E., and Shirras, A.D. (2010). Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc. Biol. Sci. 277, 65-70.   DOI
37 Johns, D., and Marx, R. (1999). Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691-1697.   DOI
38 Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperaturesensitive shibire allele in defined neurons. J. Neurobiol. 47, 81-92.   DOI