Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.013

Pheromone Biosynthesis Activating Neuropeptide (PBAN) in Insects  

Choi, Man-yeon (Horticultural Crops Research Unit, USDA ARS)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 15-28 More about this Journal
Abstract
Neuropeptides produced in neurosecretory cells are the largest group of insect hormones. They regulate various physiological functions, such as fat body homeostasis, feeding, digestion, excretion, circulation, reproduction, metamorphosis, and behavior throughout all life stages. The PRXamide peptide family (X, a variable amino acid) is a well-characterized neuropeptide component with a common amino acid sequence, PRXamide (NH2), at the C-terminal end conserved across Insecta. The PRXamide peptides are classified into three subfamilies, each having diverse biological roles in insects: (1) pyrokinin (PK) includes the pheromone biosynthesis activating neuropeptide (PBAN) and the diapause hormone (DH), (2) the capability (CAPA) peptides, and (3) the ecdysis-triggering hormone (ETH). PBAN as a member of PK subfamily was first identified to stimulate pheromone biosynthesis in moths three decades ago. Since then, PBAN peptides have been extensively studied by various research groups from a broad spectrum of arthropods. In this paper, we briefly review insect PBAN molecules with emphasis on gene structure and expression, signal transduction, physiological mechanism in sex pheromone biosynthesis, and application for pest management.
Keywords
Neuropeptide; PRXamide; Pyrokinin; PBAN; Sex pheromone biosynthesis; Pest control;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ohnishi, A., Hull, J.J., Matsumoto, S., 2006. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc. Natl. Acad. Sci. U. S. A. 103, 4398-4403.   DOI
2 Pietrantonio, P.V., Xiong, C., Nachman, R.J., Shen, Y., 2018. G protein-coupled receptors in arthropod vectors: omics and pharmacological approaches to elucidate ligand-receptor interactions and novel organismal functions. Curr. Opin. Insect Sci. 29, 12-20.   DOI
3 Plech, A., Rykaczewska-Czerwinska, M., Konopinska, D., 2004. Leucopyrokinin (LPK) analog [d-Ala(5)]-[2-8]-LPK inhibits LPK-induced analgesia in rats. Peptides 25, 1005-1011.   DOI
4 Predel, R., Neupert, S., Garczynski, S.F., Crim, J.W., Brown, M.R., Russell, W.K., Kahnt, J., Russell, D.H., Nachman, R.J., 2010. Neuropeptidomics of the mosquito Aedes aegypti. J. Proteome Res. 9, 2006-2015.   DOI
5 Scherkenbeck, J., Zdobinsky, T., 2009. Insect neuropeptides: struc tures, chemical modifications and potential for insect control. Bioorg. Med. Chem. 17, 4071-4084.   DOI
6 Schoofs, L., De Loof, A., Van Hiel, M.B., 2017. Neuropeptides as Regulators of Behavior in Insects. Annu. Rev. Entomol. 62, 35-52.   DOI
7 Schoofs, L., Vanden Broeck, J., De Loof, A., 1993. The myotropic peptides of Locusta migratoria: structures, distribution, functions and receptors. Insect Biochem. Mol. Biol. 23, 859-881.   DOI
8 Choi, M.Y., Vander Meer, R.K., 2012b. Molecular structure and diversity of PBAN/pyrokinin family peptides in ants. Front. Endocrinol. (Lausanne) 3, 32.   DOI
9 Altstein, M., Ben-Aziz, O., Daniel, S., Schefler, I., Zeltser, I., Gilon, C., 1999. Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide, inhibit sex pheromone biosynthesis in moths. J. Biol. Chem. 274, 17573-17579.   DOI
10 Hariton, A., Ben-Aziz, O., Davidovitch, M., Zubrzak, P., Nachman, R.J., Altstein, M., 2009b. Bioavailability of beta-amino acid and C-terminally derived PK/PBAN analogs. Peptides 30, 2174-2181.   DOI
11 Xu, W., Sato, Y., Yamashita, O., 1999. Molecular characterization of the cDNA encoding diapause hormone and pheromone biosynthesis activating neuropeptide in Bombyx mandarina. J. Seri. Sci. Jpn. 68, 373-379.
12 Ramaswamy, S.B., Mbata, G.N., Cohen, N.E., Moore, A., Cox, N.M., 1994. Pheromonotropic and pheromonostatic activity in moths. Arch. Insect. Biochem. Physiol. 25, 301-315.   DOI
13 Sato, Y., Oguchi, M., Menjo, N., Imai, K., Saito, H., Ikeda, M., Isobe, M., Yamashita, O., 1993. Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc. Natl. Acad. Sci. U. S. A. 90, 3251-3255.   DOI
14 Zeltser, I., Ben-Aziz, O., Schefler, I., Bhargava, K., Altstein, M., Gilon, C., 2001. Insect neuropeptide antagonist. Part II. Synthesis and biological activity of backbone cyclic and precyclic PBAN antagonists. J. Pept. Res. 58, 275-284.   DOI
15 Christensen, T.A., Itagaki, H., Teal, P.E., Jasensky, R.D., Tumlinson, J.H., Hildebrand, J.G., 1991. Innervation and neural regulation of the sex pheromone gland in female Heliothis moths. Proc. Natl. Acad. Sci. U. S. A. 88, 4971-4975.   DOI
16 Dou, X., Liu, S., Ahn, S.J., Choi, M.Y., Jurenka, R.A., 2019. Transcriptional comparison between pheromone gland-ovipositor and tarsi in the corn earworm moth Helicoverpa zea. Comp. Biochem. Physiol. Part D Genomics Proteomics 31, 100604.   DOI
17 Xu, W.H., Denlinger, D.L., 2003. Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol. Biol. 12, 509-516.   DOI
18 Xu, W.H., Sato, Y., Ikeda, M., Yamashita, O., 1995. Stage-dependent and temperature-controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. J. Biol. Chem. 270, 3804-3808.   DOI
19 Nassel, D.R., 2002. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog. Neurobiol. 68, 1-84.   DOI
20 Melcher, C., Bader, R., Pankratz, M.J., 2007. Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J. Endocrinol. 192, 467-472.   DOI
21 Yeoh, J.G.C., Pandit, A.A., Zandawala, M., Nassel, D.R., Davies, S.A., Dow, J.A.T., 2017. DINeR: Database for insect neuropeptide research. Insect Biochem. Mol. Biol. 86, 9-19.   DOI
22 Zdarek, J., Nachman, R.J., Hayes, T.K., 1997. Insect neuropeptides of the pyrokinin/PBAN family accelerate pupariation in the fleshfly (Sarcophaga bullata) larvae. Ann. N. Y. Acad. Sci. 814, 67-72.   DOI
23 Zeltser, I., Gilon, C., Ben-Aziz, O., Schefler, I., Altstein, M., 2000. Discovery of a linear lead antagonist to the insect pheromone biosynthesis activating neuropeptide (PBAN). Peptides 21, 1457-1465.   DOI
24 Wei, Z.-J., Zhang, T.Y., Sun, J.S., Xu, A.Y., Xu, W.H., Denlinger, D.L., 2004b. Molecular cloning, developmental expression, and tissue distribution of the gene encoding DH, PBAN and other FXPRL neuropeptides in Samia cynthia ricini. J. Insect Physiol. 50, 1151-1161.   DOI
25 Senthilkumar, R., Srinivasan, R., 2019. Sex-specific spatial and temporal gene expressions of pheromone biosynthesis activating neuropeptide (PBAN) and binding proteins (PBP/OBP) in Spoladea recurvalis. Sci. Rep. 9, 3515.   DOI
26 Kitamura, A., Nagasawa, H., Kataoka, H., Inoue, T., Matsumoto, S., Ando, T., Suzuki, A., 1989. Amino acid sequence of pheromone biosynthesis activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 163, 520-526.   DOI
27 Ma, P.W.K., Knipple, D.C., Roelofs, W.L., 1998. Expression of a gene that encodes pheromone biosynthesis activating neuropeptide in the central nervous system of corn earworm, Helicoverpa zea. Insect Biochem. Mol. Biol. 28, 373-385.   DOI
28 Matsumoto, S., Kitamura, A., Nagasawa, H., Kataoka, H., Orikasa, C., Mitsui, T., Suzuki, A., 1990. Functional diversity of a neurohormone produced by the suboesophageal ganglion: Molecular identity of melanization and reddish colouration hormone and pheromone biosynthesis activating neuropeptide. J. Insect Physiol. 36, 427-432.   DOI
29 Choi, M.Y., Sanscrainte, N.D., Estep, A.S., Vander Meer, R.K., Becnel, J.J., 2015. Identification and expression of a new member of the pyrokinin/pban gene family in the sand fly Phlebotomus papatasi. J. Insect Physiol. 79, 55-62.   DOI
30 Sun, J.S., Zhang, T.Y., Zhang, Q.R., Xu, W.H., 2003. Effect of the brain and suboesophageal ganglion on pupal development in Helicoverpa armigera through regulation of FXPRLamide neuropeptides. Regul. Pept. 116, 163-171.   DOI
31 Wei, Z.-J., Hong, G.-Y., Jinag, S.-T., Tong, Z.-X., Lu, C., 2008. Characters and expression of the gene encoding DH, PBAN and other FXPRLamide family neuropeptides in Antheraea pernyi. J. Appl. Entomol. 132, 59-67.   DOI
32 Miyamoto, T., Yamamoto, M., Ono, A., Ohtani, K., Ando, T., 1999. Substrate specificity of the epoxidation reaction in sex pheromone biosynthesis of the Japanese giant looper (Lepidoptera: Geometridae). Insect Biochem. Mol. Biol. 29, 63-69.   DOI
33 Matsumoto, S., Ozawa, R., Nagamine, T., Kim, G.H., Uchiumi, K., Shono, T., Mitsui, T., 1995a. Intracellular transduction in the regulation of pheromone biosynthesis of the silkworm, Bombyx mori: suggested involvement of calmodulin and phosphoprotein phosphatase. Biosci. Biotechnol. Biochem. 59, 560-562.   DOI
34 Matsumoto, S., Ozawa, R., Uchiumi, K., Kurihara, M., Mitsui, T., 1995b. Intracellular signal transduction of PBAN action in the common cutworm, Spodoptera litura: effects of pharmacological agents on sex pheromone production in vitro. Insect Biochem. Mol. Biol. 25, 1055-1059.   DOI
35 Melcher, C., Pankratz, M.J., 2005. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 3, e305.   DOI
36 Nachman, R.J., Holman, G.M., Haddon, W.F., 1993. Leads for insect neuropeptide mimetic development. Arch. Insect. Biochem. Physiol. 22, 181-197.   DOI
37 Nachman, R.J., Kim, Y.J., Wang, X.J., Etzkorn, F.A., Kaczmarek, K., Zabrocki, J., Adams, M.E., 2009b. Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor. Bioorg. Med. Chem. 17, 4216-4220.   DOI
38 Jurenka, R.A., Jacquin, E., Roelofs, W.L., 1991b. Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc. Natl. Acad. Sci. U. S. A. 88, 8621-8625.   DOI
39 Jurenka, R.A., 2017. Regulation of pheromone biosynthesis in moths. Curr. Opin. Insect Sci. 24, 29-35.   DOI
40 Jurenka, R.A., Fabrias, G., Ramaswamy, S., Roelofs, W.L., 1993. Control of pheromone biosynthesis in mated redbanded leafroller moths. Arch. Insect. Biochem. Physiol. 24, 129-137.   DOI
41 Jurenka, R.A., Rafaeli, A., 2011. Regulatory role of PBAN in sex pheromone biosynthesis of Heliothine moths. Front. Endocrinol. (Lausanne) 2, 46.   DOI
42 Kim, Y.J., Nachman, R.J., Aimanova, K., Gill, S., Adams, M.E., 2008. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure-activity relationships of ligand analogs. Peptides 29, 268-275.   DOI
43 Kuniyoshi, H., Nagasawa, H., Ando, T., Suzuki, A., Nachman, R.J., Holman, G.M., 1992b. Cross-activity between pheromone biosynthesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci. Biotechnol. Biochem. 56, 167-168.   DOI
44 Zhang, Q., Nachman, R.J., Zubrzak, P., Denlinger, D.L., 2009. Conformational aspects and hyperpotent agonists of diapause hormone for termination of pupal diapause in the corn earworm. Peptides 30, 596-602.   DOI
45 Teal, P.E.A., Davis, N.T., Meredith, J.A., Christensen, T.A., Hildebrand, J.G., 1999b. Role of the ventral nerve cord and terminal abdominal ganglion in the regulation of sex pheromone production in the tobacco budworm (Lepidoptera : noctuidae). Ann. Entomol. Soc. Am. 92, 891-901.   DOI
46 Zdarek, J., Nachman, R.J., Hayes, T.K., 1998. Structure-activity relationships of insect neuropeptides of the pyrokinin/PBAN family and their selective action on pupariation in flesh fly (Neobelleria bullata) larvae (Diptera, Sarcophagidae). Eur. J. Entomol. 95, 9-16.
47 Altstein, M., Ben-Aziz, O., Schefer, I., Zeltser, I., Gilon, C., 2000. Advances in the application of neuropeptides in insect control. Crop. Protection. 19, 547-555.   DOI
48 Baggerman, G., Cerstiaens, A., De Loof, A., Schoofs, L., 2002. Peptidomics of the larval Drosophila melanogaster central nervous system. J. Biol. Chem. 277, 40368-40374.   DOI
49 Zhang, Q.R., Nachman, R.J., Kaczmarek, K., Zabrocki, J., Denlinger, D.L., 2011. Disruption of insect diapause using agonists and an antagonist of diapause hormone. Proc. Natl. Acad. Sci. U. S. A. 108, 16922-16926.   DOI
50 Nachman, R.J., Teal, P.E., Radel, P.A., Holman, G.M., Abernathy, R.L., 1996. Potent pheromonotropic/myotropic activity of a carboranyl pseudotetrapeptide analogue of the insect pyrokinin/PBAN neuropeptide family administered via injection or topical application. Peptides 17, 747-752.   DOI
51 Rafaeli, A., Gileadi, C., 1996. Down regulation of pheromone biosynthesis: cellular mechanisms of pheromonostatic responses. Insect Biochem. Mol. Biol. 26, 797-807.   DOI
52 Rafaeli, A., Bober, R., Becker, L., Choi, M.Y., Fuerst, E.J., Jurenka, R.A., 2007. Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol. Biol. 16, 287-293.   DOI
53 Rafaeli, A., Gileadi, C., 1995. Modulation of the PBAN-stimulated pheromonotropic activity in Helicoverpa armigera. Insect Biochem. Mol. Biol. 25, 827-834.   DOI
54 Choi, M.Y., Jurenka, R.A., 2006a. C75, a fatty acid synthase inhibitor, inhibits feeding activity and pheromone production in a moth, Helicoverpa zea. J. Asia Pac. Entomol. 9, 43-48.   DOI
55 Choi, M.Y., Jurenka, R.A., 2006b. Role of extracellular Ca2+ and calcium channel activated by a G protein-coupled receptor regulating pheromone production in Helicoverpa zea (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 99, 905-909.   DOI
56 Christensen, T.A., Hildebrand, J.G., 1995. Neural regulation of sex pheromone glands in Lepidoptera. Invert. Neurosci. 1, 97-103.   DOI
57 Choi, M.Y., Vander Meer, R.K., Shoemaker, D., Valles, S.M., 2011. PBAN gene architecture and expression in the fire ant, Solenopsis invicta. J. Insect Physiol. 57, 161-165.   DOI
58 Choi, M.Y., Vander Meer, R.K., 2019. Phenotypic effects of PBAN RNAi using oral delivery of dsRNA to corn earworm (Lepidoptera: Noctuidae) and tobacco budworm larvae. J. Econ. Ent. 112, 434-439.   DOI
59 Choi, M.Y., Vander Meer, R.K., 2021. GPCR-based bioactive peptide screening using phage-displayed peptides and an insect cell system for insecticide discovery. Biomolecules 11.
60 Christensen, T.A., Lashbrook, J.M., Hildebrand, J.G., 1994. Neural activation of the sex-pheromone gland in the moth Manduca sexta: real-time measurement of pheromone release. Physiological Entomology 19, 265-270.   DOI
61 Raina, A.K., 1993. Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Annu. Rev. Entomol. 38, 329-349.   DOI
62 Raina, A.K., Jaffe, H., Kempe, T.G., Keim, P., Blacher, R.W., Fales, H.M., Riley, C.T., Klun, J.A., Ridgway, R.L., Hayes, D.K., 1989. Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244, 796-798.   DOI
63 Raina, A.K., Kempe, T.G., 1990. A pentapeptide of the C-terminal sequence of PBAN with pheromonotropic activity. Insect Biochem. 20, 849-851.   DOI
64 Lee, D.W., Shrestha, S., Kim, A.Y., Park, S.J., Yang, C.Y., Kim, Y., Koh, Y.H., 2011. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). Insect Biochem. Mol. Biol. 41, 236-243.   DOI
65 Li, Z.Q., Zhang, S., Luo, J.Y., Wang, C.Y., Lv, L.M., Dong, S.L., Cui, J.J., 2015. Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components. Sci. Rep. 5, 9324.   DOI
66 Altstein, M., Nassel, D.R., 2010. Neuropeptide signaling in insects, in: Geary, T.G., Maule, A.G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. Springer, New York, pp. 155-165.
67 Teal, P.E., Meredith, J.A., Nachman, R.J., 1999a. Comparison of rates of penetration through insect cuticle of amphiphylic analogs of insect pyrokinin neuropeptides. Peptides 20, 63-70.   DOI
68 Shi, Y., Nachman, R.J., Gui, S.H., Piot, N., Kaczmarek, K., Zabrocki, J., Dow, J.A.T., Davies, S.A., Smagghe, G., 2021. Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peach-potato aphid (Myzus persicae). Insect Sci. (in press).
69 Southey, B.R., Sweedler, J.V., Rodriguez-Zas, S.L., 2008. Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24, 815-825.   DOI
70 Suang, S., Manaboon, M., Singtripop, T., Hiruma, K., Kaneko, Y., Tiansawat, P., Neumann, P., Chantawannakul, P., 2017. Larval diapause termination in the bamboo borer, Omphisa fuscidentalis. PLoS ONE 12, e0174919.   DOI
71 Teal, P.E., Nachman, R.J., 1997. Prolonged pheromonotropic activity of pseudopeptide mimics of insect pyrokinin neuropeptides after topical application or injection into a moth. Regul. Pept. 72, 161-167.   DOI
72 Hariton, A., Ben-Aziz, O., Davidovitch, M., Nachman, R.J., Altstein, M., 2009a. Bioavailability of insect neuropeptides: the PK/PBAN family as a case study. Peptides 30, 1034-1041.   DOI
73 Fonagy, A., Matsumoto, S., Uchhiumi, K., Mitsui, T., 1992. Role of calcium ion and cyclic nucleotides in pheromone production in Bombyx mori. J. Pesticide. Science. 17, 115-121.   DOI
74 Gade, G., Hoffmann, K.H., 2005. Neuropeptides regulating development and reproduction in insects. Physiol. Entomol. 30, 103-121.   DOI
75 Grimmelikhuijzen, C.J., Cazzamali, G., Williamson, M., Hauser, F., 2007. The promise of insect genomics. Pest Manag. Sci. 63, 413-416.   DOI
76 Nassel, D.R., Winther, A.M., 2002. Neuronal co-localization of different isoforms of tachykinin-related peptides (LemTRPs) in the cockroach brain. Cell Tissue Res. 308, 225-239.   DOI
77 Nassel, D.R., Winther, A.M., 2010. Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42-104.   DOI
78 Nachman, R.J., Teal, P.E., Ujvary, I., 2001. Comparative topical pheromonotropic activity of insect pyrokinin/PBAN amphiphilic analogs incorporating different fatty and/or cholic acid components. Peptides 22, 279-285.   DOI
79 Baggerman, G., Boonen, K., Verleyen, P., De Loof, A., Schoofs, L., 2005. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J. Mass. Spectrom. 40, 250-260.   DOI
80 Bader, R., Colomb, J., Pankratz, B., Schrock, A., Stocker, R.F., Pankratz, M.J., 2007a. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. J. Comp. Neurol. 502, 848-856.   DOI
81 Ben-Aziz, O., Zeltser, I., Bhargava, K., Davidovitch, M., Altstein, M., 2006. Backbone cyclic pheromone biosynthesis activating neuropeptide (PBAN) antagonists: inhibition of melanization in the moth Spodoptera littoralis (Insecta, Lepidoptera). Peptides 27, 2147-2156.   DOI
82 Imai, K., Konno, T., Nakazawa, Y., Komiya, T., Isobe, M., Koga, K., Goto, T., Yaginuma, T., Sakakibara, K., Hasegawa, K., Yamashita, 1991. Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc. Japan Acad. 67(B), 98-101.   DOI
83 Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rossler, W., Simpson, J.H., Strausfeld, N.J., Strauss, R., Vosshall, L.B., Insect Brain Name Working, G., 2014. A systematic nomenclature for the insect brain. Neuron 81, 755-765.   DOI
84 Jiang, H., Wei, Z., Nachman, R.J., Park, Y., 2014. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea. Peptides 53, 243-249.   DOI
85 Jurenka, R.A., 2003. Biochemistry of female moth sex pheromones, in: Blomquist, G., Vogt, R. (Eds.), Insect Pheromone Biochemistry and Molecular Biology. Academic Press, New York, pp. 53-80.
86 Nassel, D.R., Homberg, U., 2006. Neuropeptides in interneurons of the insect brain. Cell Tissue Res. 326, 1-24.   DOI
87 Ahn, S.J., Mc Donnell, R.J., Corcoran, J.A., Martin, R.C., Choi, M.Y., 2020. Identification and functional characterization of the first molluscan neuromedin U receptor in the slug, Deroceras reticulatum. Sci. Rep. 10, 22308.   DOI
88 Fleites, L.A., Johnson, R., Kruse, A.R., Nachman, R.J., Hall, D.G., MacCoss, M., Heck, M.L., 2020. Peptidomics approaches for the identification of bioactive molecules from Diaphorina citri. J. Proteome. Res. 19, 1392-1408.   DOI
89 Gui, S.H., Taning, C.N., De Schutter, K., Yang, Q., Chen, P., Hamshou, M., Nachman, R.J., Pandit, A.A., Dow, J.A., Davies, S., Smagghe, G., 2020. Assessment of insecticidal effects and selectivity of CAPA-PK peptide analogues against the peach-potato aphid and four beneficial insects following topical exposure. Pest Manag. Sci. 76, 3451-3458.   DOI
90 Nachman, R.J., Wang, X.J., Etzkorn, F.A., Aziz, O.B., Davidovitch, M., Kaczmarek, K., Zabrocki, J., Strey, A., Pryor, N., Altstein, M., 2009d. Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays. Peptides 30, 1254-1259.   DOI
91 Nassel, D.R., Zandawala, M., 2019. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog. Neurobiol. 179, 101607.   DOI
92 Zubrzak, P., Williams, H., Coast, G.M., Isaac, R.E., Reyes-Rangel, G., Juaristi, E., Zabrocki, J., Nachman, R.J., 2007. Beta-amino acid analogs of an insect neuropeptide feature potent bioactivity and resistance to peptidase hydrolysis. Biopolymers 88, 76-82.   DOI
93 Choi, M.Y., Ahn, S.J., Park, K.C., Vander Meer, R., Carde, R.T., Jurenka, R.A., 2016. Tarsi of male Heliothine moths contain aldehydes and butyrate esters as potential pheromone components. J. Chem. Ecol. 42, 425-432.   DOI
94 Ben-Aziz, O., Zeltser, I., Altstein, M., 2005. PBAN selective antagonists: inhibition of PBAN induced cuticular melanization and sex pheromone biosynthesis in moths. J. Insect Physiol. 51, 305-314.   DOI
95 Bloch, G., Hazan, E., Rafaeli, A., 2013. Circadian rhythms and endocrine functions in adult insects. J. Insect Physiol. 59, 56-69.   DOI
96 Caers, J., Verlinden, H., Zels, S., Vandersmissen, H.P., Vuerinckx, K., Schoofs, L., 2012. More than two decades of research on insect neuropeptide GPCRs: an overview. Front. Endocrinol. (Lausanne) 3, 151.   DOI
97 Choi, M.Y., Groot, A., Jurenka, R.A., 2005. Pheromone biosynthetic pathways in the moths Heliothis subflexa and Heliothis virescens. Arch. Insect Biochem. Physiol. 59, 53-58.   DOI
98 Choi, M.Y., Lee, J.M., Han, K.S., Boo, K.S., 2004. Identification of a new member of PBAN family and immunoreactivity in the central nervous system from Adoxophyes sp. (Lepidoptera: Tortricidae). Insect Biochem. Mol. Biol. 34, 927-935.   DOI
99 Choi, M.Y., Vander Meer, R.K., 2009. Identification of a new member of the PBAN family of neuropeptides from the fire ant, Solenopsis invicta. Insect Mol. Biol. 18, 161-169.   DOI
100 Bader, R., Wegener, C., Pankratz, M.J., 2007b. Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN). Fly 1, 228-231.   DOI
101 Van Hiel, M.B., Van Loy, T., Poels, J., Vandersmissen, H.P., Verlinden, H., Badisco, L., Broeck, J.V., 2010. Neuropeptide receptors as possible targets for development of insect pest control agents, in: Geary, T.G., Maule, A.G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. Springer, New York, pp. 211-226.
102 Jurenka, R.A., 2015. The PRXamide neuropeptide signalling system: Conserved in animals, in: Jurenka, R.A. (Ed.), Advances in Insect Physiology. Elsevier, pp. 123-170.
103 Hull, J.J., Ohnishi, A., Moto, K., Kawasaki, Y., Kurata, R., Suzuki, M.G., Matsumoto, S., 2004. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. J. Biol. Chem. 279, 51500-51507.   DOI
104 Teal, P.E., Tumlinson, J.H., Oberlander, H., 1989. Neural regulation of sex pheromone biosynthesis in Heliothis moths. Proc. Natl. Acad. Sci. U. S. A. 86, 2488-2492.   DOI
105 Thyagaraja, B.S., Raina, A.K., 1994. Regulation of pheromone production in the gypsy moth, Lymantria dispar, and development of an in vivo bioassay. J. Insect Physiol. 40, 969-974.   DOI
106 Tillman, J.A., Seybold, S.J., Jurenka, R.A., Blomquist, G.J., 1999. Insect pheromones-an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29, 481-514.   DOI
107 Jurenka, R.A., Fabrias, G., DeVoe, L., Roelofs, W.L., 1994. Action of PBAN and related peptides on pheromone biosynthesis in isolated pheromone glands of the redbanded leafroller moth, Argyrotaenia velutinana. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 108, 153-160.   DOI
108 Jacquin, E., Jurenka, R.A., Ljungberg, H., Nagnan, P., Lofstedt, C., Descoins, C., Roelofs, W.L., 1994. Control of sex-pheromone biosynthesis in the moth Mamestra brassicae by the pheromone biosynthesis activating neuropeptide. Insect Biochem. Mol. Biol. 24, 203-211.   DOI
109 Matsumoto, S., Yamashita, O., Fonagy, A., Kurihara, M., Uchiumi, K., Nagamine, T., Mitsui, T., 1992. Functional diversity of a pheromonotropic neuropeptide - Induction of cuticular melanization and embryonic diapause in Lepidopteran Insects by Pseudaletia pheromonotropin. J. Insect Physiol. 38, 847-851.   DOI
110 Zhu, J.W., Millar, J., Lofstedt, C., 1995. Hormonal regulation of sex pheromone biosynthesis in the turnip moth, Agrotis segetum. Arch. Insect. Biochem. Physiol. 30, 41-59.   DOI
111 Liu, N., Li, T., Wang, Y., Liu, S., 2021. G-protein coupled receptors (GPCRs) in insects-A potential target for new insecticide development. Molecules 26.
112 Choi, M.Y., Estep, A., Sanscrainte, N., Becnel, J., Vander Meer, R.K., 2013. Identification and expression of PBAN/diapause hormone and GPCRs from Aedes aegypti. Mol. Cell. Endocrinol. 375, 113-120.   DOI
113 Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R.A., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl. Acad. Sci. U. S. A. 100, 9721-9726.   DOI
114 Choi, M.Y., Han, K.S., Boo, K.S., Jurenka, R.A., 2002. Pheromone biosynthetic pathways in the moths Helicoverpa zea and Helicoverpa assulta. Insect Biochem. Mol. Biol. 32, 1353-1359.   DOI
115 Lajevardi, A., Paluzzi, J.V., 2020. Receptor characterization and functional activity of pyrokinins on the hindgut in the adult mosquito, Aedes aegypti. Front. Physiol. 11, 490.   DOI
116 Jurenka, R., Nusawardani, T., 2011. The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains. Insect Mol. Biol. 20, 323-334.   DOI
117 Jurenka, R.A., Fabrias, G., Roelofs, W.L., 1991a. Hormonal control of female sex pheromone biosynthesis in the redbanded leafroller moth, Argyrotaenia velutinana. Insect Biochem. 21, 81-89.   DOI
118 Jurenka, R.A., Subchev, M., Abad, J.L., Choi, M.Y., Fabrias, G., 2003. Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proc. Natl. Acad. Sci. U. S. A. 100, 809-814.   DOI
119 Kuniyoshi, H., Nagasawa, H., Ando, T., Suzuki, A., 1992a. N-terminal modified analogs of C-terminal fragments of PBAN with pheromonotropic activity. Insect Biochem. Mol. Biol. 22, 399-403.   DOI
120 Lee, D.W., Boo, K.S., 2005. Molecular characterization of pheromone biosynthesis activating neuropeptide from the diamondback moth, Plutella xylostella (L.). Peptides 26, 2404-2411.   DOI
121 Ma, P.W.K., Roelofs, W.L., 1995a. Calcium involvement in the stimulation of sex pheromone production by PBAN in the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Insect Biochem. Mol. Biol. 25, 467-473.   DOI
122 Marciniak, P., Pacholska-Bogalska, J., Szymczak, M., Rosinski, G., 2011. Molecular and physiological characterization of the pyrokinin insect neuropeptide family. Postepy Biochem. 57, 365-371.
123 Veenstra, J.A., 2016. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen. Comp. Endocrinol. 229, 41-55.   DOI
124 Choi, M.Y., Jurenka, R.A., 2004. PBAN stimulation of pheromone biosynthesis by inducing calcium influx in pheromone glands of Helicoverpa zea. J. Insect Physiol. 50, 555-560.   DOI
125 Vanden Broeck, J., 2001. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241-254.   DOI
126 Veenstra, J.A., 2000. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect. Biochem. Physiol. 43, 49-63.   DOI
127 Watanabe, K., Hull, J.J., Niimi, T., Imai, K., Matsumoto, S., Yaginuma, T., Kataoka, H., 2007. FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol. Cell. Endocrinol. 273, 51-58.   DOI
128 Abernathy, R.L., Teal, P.E., Meredith, J.A., Nachman, R.J., 1996. Induction of pheromone production in a moth by topical application of a pseudopeptide mimic of a pheromonotropic neuropeptide. Proc. Natl. Acad. Sci. U. S. A. 93, 12621-12625.   DOI
129 Ahn, S.J., Choi, M.Y., 2018. Identification and characterization of capa and pyrokinin genes in the brown marmorated stink bug, Halyomorpha halys (Hemiptera): Gene structure, immunocytochemistry, and differential expression. Arch. Insect Biochem. Physiol. 99, e21500.   DOI
130 Alford, L., Marley, R., Dornan, A., Pierre, J.S., Dow, J.A., Nachman, R.J., Davies, S.A., 2019. Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. Pest. Manag. Sci. 75, 1750-1759.   DOI
131 Altstein, M., Ben-Aziz, O., Zeltser, I., Bhargava, K., Davidovitch, M., Strey, A., Pryor, N., Nachman, R.J., 2007. Inhibition of PK/PBAN-mediated functions in insects: discovery of selective and non-selective inhibitors. Peptides 28, 574-584.   DOI
132 Zhang, T.Y., Sun, J.S., Zhang, L.B., Shen, J.L., Xu, W.H., 2004. Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J. Insect Physiol. 50, 25-33.   DOI
133 Jurenka, R.A., 1996. Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch. Insect Biochem. Physiol. 33, 245-258.   DOI
134 Jurenka, R.A., 2004. Insect Pheromone Biosynthesis, in: Schulz, S. (Ed.), Topics in Current Chemistry. Springer, Berlin, pp. 97-239.
135 Ma, P.W., Knipple, D.C., Roelofs, W.L., 1994. Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis activating neuropeptide and other neuropeptides. Proc. Natl. Acad. Sci. U. S. A. 91, 6506-6510.   DOI
136 Bendena, W.G., 2010. Neuropeptide Physiology in Insects, in: Geary, T.G., Maule, A.G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. Springer, New York, pp. 166-191.
137 Blomquist, G.J., Vogt, R.G., 2020. Insect pheromone biochemistry and molecular biology, 2 ed. Elsevier, Cambridge.
138 Boo, K.S., 2001. Insect hormones and their actions. Korean J. Appl. Entomol 40, 155-196.
139 Altstein, M., 2001. Insect neuropeptide antagonists. Biopolymers 60, 460-473.   DOI
140 Altstein, M., 2004b. Role of neuropeptides in sex pheromone production in moths. Peptides 25, 1491-1501.   DOI
141 Wei, W., Miyamoto, T., Endo, M., Murakawa, T., Pu, G.Q., Ando, T., 2003. Polyunsaturated hydrocarbons in the hemolymph: biosynthetic precursors of epoxy pheromones of geometrid and arctiid moths. Insect Biochem. Mol. Biol. 33, 397-405.   DOI
142 Du, M., Zhao, W., Jurenka, R., Liu, X., Yin, X., Song, Q., An, S., 2017. Transcriptome analysis of Helicoverpa armigera male hairpencils: Alcohol biosynthesis and requirement for mating success. Insect Biochem. Mol. Biol. 87, 154-164.   DOI
143 Altstein, M., 2004a. Novel insect control agents based on neuropeptide antagonists: The PK/PBAN family as a case study. J. Mol. Neurosci. 22, 147-157.   DOI
144 Audsley, N., Down, R.E., 2015. G protein coupled receptors as targets for next generation pesticides. Insect Biochem. Mol. Biol. 67, 27-37.   DOI
145 Jiang, H., Wei, Z., Nachman, R.J., Kaczmarek, K., Zabrocki, J., Park, Y., 2015. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 68, 246-252.   DOI
146 Chen, Y., Liu, Y., Tian, H., Chen, Y., Lin, S., Mao, Q., Zheng, N., Zhao, J., Gu, X., Wei, H., 2019. Distribution of pheromone biosynthesis-activating neuropeptide in the central nervous system of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 112, 2638-2648.
147 Choi, M.Y., Ahn, S.J., Kim, A.Y., Koh, Y., 2017. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii. Gen. Comp. Endocrinol. 246, 354-362.   DOI
148 Wei, W., Yamamoto, M., Asato, T., Fujii, T., Pu, G.Q., Ando, T., 2004a. Selectivity and neuroendocrine regulation of the precursor uptake by pheromone glands from hemolymph in geometrid female moths, which secrete epoxyalkenyl sex pheromones. Insect Biochem. Mol. Biol. 34, 1215-1224.   DOI
149 Xiong, C., Yang, Y., Nachman, R.J., Pietrantonio, P.V., 2021. Tick CAPA propeptide cDNAs and receptor activity of endogenous tick pyrokinins and analogs: Towards discovering pyrokinin function in ticks. Peptides 146, 170665.   DOI
150 Wegener, C., Reinl, T., Jansch, L., Predel, R., 2006. Direct mass spectrometric peptide profiling and fragmentation of larval peptide hormone release sites in Drosophila melanogaster reveals tagmaspecific peptide expression and differential processing. J. Neurochem. 96, 1362-1374.   DOI
151 Gade, G., Goldsworthy, G.J., 2003. Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest. Manag. Sci. 59, 1063-1075.   DOI
152 Garczynski, S.F., Hendrickson, C.A., Harper, A., Unruh, T.R., Dhingra, A., Ahn, S.J., Choi, M.Y., 2019. Neuropeptides and peptide hormones identified in codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Arch. Insect. Biochem. Physiol. 101, e21587.   DOI
153 Gazit, Y., Dunkelblum, E., Benichis, M., Altstein, M., 1990. Effect of synthetic PBAN and derived peptides on sex pheromone biosynthesis in Heliothis peltigera (Lepidoptera: Noctuidae). Insect Biochem. 20, 853-858.   DOI
154 Rafaeli, A., Soroker, V., 1994. Second messenger interactions in response to PBAN stimulation of pheromone gland cultures., in: Borkovec, A., Loeb, M.J. (Eds.), Insect Neurochemistry and Neurophysiology. CRC Press, Boca Raton.
155 Iglesias, F., Marco, M.P., Jacquin Joly, E., Camps, F., Fabrias, G., 1998. Regulation of sex pheromone biosynthesis in two noctuid species, S. littoralis and M. brassicae, may involve both PBAN and the ventral nerve cord. Arch. Insect. Biochem. Physiol. 37, 295-304.   DOI
156 Nachman, R.J., Ben Aziz, O., Davidovitch, M., Zubrzak, P., Isaac, R.E., Strey, A., Reyes-Rangel, G., Juaristi, E., Williams, H.J., Altstein, M., 2009a. Biostable beta-amino acid PK/PBAN analogs: agonist and antagonist properties. Peptides 30, 608-615.   DOI
157 Rafaeli, A., 2009. Pheromone biosynthesis activating neuropeptide (PBAN): regulatory role and mode of action. Gen. Comp. Endocrinol. 162, 69-78.   DOI
158 Ma, P.W.K., Ramaswamy, S., 2003. Biology and ultrastructure of sex pheromone producing tissue, in: Blomquist, G., Vogt, R. (Eds.), Pheromone biochemistry and molecular biology. Elsevier, London, pp. 19-51.
159 Lu, Q., Huang, L.Y., Chen, P., Yu, J.F., Xu, J., Deng, J.Y., Ye, H., 2015. Identification and RNA Interference of the pheromone biosynthesis activating neuropeptide (PBAN) in the common cutworm moth Spodoptera litura (Lepidoptera: Noctuidae). J. Econ. Entomol. 108, 1344-1353.   DOI
160 Ma, P.W., Garden, R.W., Niermann, J.T., M, O.C., Sweedler, J.V., Roelofs, W.L., 2000. Characterizing the Hez-PBAN gene products in neuronal clusters with immunocytochemistry and MALDI MS. J. Insect Physiol. 46, 221-230.   DOI
161 Ma, P.W.K., Roelofs, W.L., 1995b. Sites of synthesis and release of PBAN-like factor in the female European corn borer, Ostrinia nubilalis. J. Insect Physiol. 41, 339-350.   DOI
162 Ramaswamy, S.B., Jurenka, R.A., Linn, C.E., Jr., Roelofs, W.L., 1995. Evidence for the presence of a pheromonotropic factor in hemolymph and regulation of sex pheromone production in Helicoverpa zea. J. Insect Physiol. 41, 501-508.   DOI
163 Choi, M.Y., Kohler, R., Vander Meer, R.K., Neupert, S., Predel, R., 2014. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS ONE 9, e94274.   DOI
164 Hariton, A., Ben-Aziz, O., Davidovitch, M., Altstein, M., 2010. Bioavailability of backbone cyclic PK/PBAN neuropeptide antagonists--inhibition of sex pheromone biosynthesis elicited by the natural mechanism in Heliothis peltigera females. FEBS J. 277, 1035-1044.   DOI
165 Holman, G.M., Cook, B.J., Nachman, R.J., 1986. Isolation, primary structure and synthesis of a blocked neuropeptide isolated from the cockroach, Leucophaea maderae. Comp. Biochem. Physiol. 85C, 219-224.
166 Ma, P.W.K., Roelofs, W.L., Jurenka, R.A., 1996. Characterization of PBAN and PBAN-encoding gene neuropeptides in the central nervous system of corn earworm moth, Helicoverpa zea. J. Insect Physiol. 42, 257-266.   DOI
167 Masler, E.P., Kelly, T.J., Menn, J.J., 1993. Insect neuropeptides: discovery and application in insect management. Arch. Insect. Biochem. Physiol. 22, 87-111.   DOI
168 Raina, A.K., Klun, J.A., 1984. Brain factor control of sex pheromone production in the female corn earworm moth. Science 225, 531-533.   DOI
169 Raina, A.K., Wergin, W.P., Murphy, C.A., Erbe, E.F., 2000. Structural organization of the sex pheromone gland in Helicoverpa zea in relation to pheromone production and release. Arthropod Struct. Dev. 29, 343-353.   DOI
170 Choi, M.Y., Lim, H., Park, K.C., Adlof, R., Wang, S., Zhang, A., Jurenka, R.A., 2007. Identification and biosynthetic studies of the hydrocarbon sex pheromone in Utetheisa ornatrix. J. Chem. Ecol. 33, 1336-1345.   DOI
171 Choi, M.Y., Rafaeli, A., Jurenka, R.A., 2001. Pyrokinin/PBANl-ike peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res. 306, 459-465.   DOI
172 Choi, M.Y., Tanaka, M., Kataoka, H., Boo, K.S., Tatsuki, S., 1998a. Isolation and identification of the cDNA encoding the pheromone biosynthesis activating neuropeptide and additional neuropeptides in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 28, 759-766.   DOI
173 Choi, M.Y., Tatsuki, S., Boo, K.S., 1998b. Regulation of sex pheromone biosynthesis in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 44, 653-658.   DOI
174 Choi, M.Y., Vander Meer, R.K., 2012a. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS ONE 7, e50400.   DOI
175 Choi, M.Y., Vander Meer, R.K., Coy, M., Scharf, M.E., 2012. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J. Insect. Physiol. 58, 1159-1165.   DOI
176 Nachman, R.J., Teal, P.E., Aziz, O.B., Davidovitch, M., Zubrzak, P., Altstein, M., 2009c. An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a Heliothine insect. Peptides 30, 616-621.   DOI
177 Hull, J.J., Brent, C.S., Choi, M.Y., Miko, Z., Fodor, J., Fonagy, A., 2021. Molecular and functional characterization of Pyrokinin-like peptides in the western tarnished plant bug Lygus hesperus (Hemiptera: Miridae). Insects 12.
178 Raina, A.K., Rafaeli, A., Kingan, T.G., 1994. Pheromonotropic activity of orally administered PBAN and its analogues in Helicoverpa zea. J. Insect Physiol. 40, 393-397.   DOI
179 Meng, X., Wahlstrom, G., Immonen, T., Kolmer, M., Tirronen, M., Predel, R., Kalkkinen, N., Heino, T.I., Sariola, H., Roos, C., 2002. The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides. Mech. Dev. 117, 5-13.   DOI
180 Nachman, R.J., Holman, G.M., Cook, B.J., 1986. Active fragments and analogs of the insect neuropeptide leucopyrokinin: structure-function studies. Biochem. Biophys. Res. Commun. 137, 936-942.   DOI
181 Audsley, N., Weaver, R.J., 2009. Neuropeptides associated with the regulation of feeding in insects. Gen. Comp. Endocrinol. 162, 93-104.   DOI
182 Marco, M.P., Fabrias, G., Lazaro, G., Camps, F., 1996. Evidence for both humoral and neural regulation of sex pheromone biosynthesis in Spodoptera littoralis. Arch. Insect. Biochem. Physiol. 31, 157-167.   DOI