Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.009

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly  

Kim, Young-Joon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Zhang, Chen (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 109-115 More about this Journal
Abstract
Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.
Keywords
Vitellogenesis; Juvenile hormone; Sex peptide; Allatostatin C; Ecdysis triggering hormone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shafer, O.T., 2006. Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180-193.   DOI
2 Soller, M., Bownes, M., Kubli, E., 1997. Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster. Eur. J. Biochem. 243, 732-738.   DOI
3 Kim, Y.J., Zitnan, D., Galizia, C.G., Cho, K.H., Adams, M.E., 2006b. A Command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395-1407.   DOI
4 Zhang, Y., Liu, Y., Bilodeau-Wentworth, D., Hardin, P.E., Emery, P., 2010. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior. Curr. Biol. 20, 600-605.   DOI
5 Soller, M., Bownes, M., Kubli, E., 1999. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337-351.   DOI
6 Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., Garofalo, R.S., 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110.   DOI
7 Terashima, J., Takaki, K., Sakurai, S., Bownes, M., 2005. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J. Endocrinol. 187, 39-79.
8 Yamanaka, N., Yamamoto, S., Zitnan, D., Watanabe, K., Kawada, T., Satake, H., Kaneko, Y., Hiruma, K., Tanaka, Y., Shinoda, T., Kataoka, H., 2008. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE 3, 1-12.
9 Saunders, D.S., Henrich, V.C., Gilbert, L.I., 1989. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl. Acad. Sci. U. S. A. 86, 3748-3752.   DOI
10 Allemand, R., 1976b. Influence de modifications des conditions des conditions lumineuses sur les ruthmes circadiens de vitellogenesis et d'ovulation chez Drosophila melanogaster. J. Insect Physio. 22,1075-1080.   DOI
11 Allemand, R., 1976a. Les rythmes de vitellogenese et d'ovulation en photoperiode LD 12:12 de Drosophila melanogaster. J. Insect Physiol. 22,1031-1035.   DOI
12 Jowett, T., Postlethwait, J.H., 1980. The regulation of yolk polypeptide synthesis in Drosophila ovaries and fat body by 20- hydroxyecdysone and a juvenile hormone analog. Dev. Biol. 80, 225-234.   DOI
13 Kim, Y.J., Zitnan, D., Cho, K.H., Schooley, D.A., Misoguchi, A., Adams, M.E., 2006a. Central peptidergic ensembles associated with organization of an innate behavior. Proc. Natl. Acad. Sci. U. S. A. 103, 14211-14216.   DOI
14 Kramer, S.J., Toschi, A., Miller, C.A., Kataoka, H., Quistad, G.B., Li, J.P., Carney, R.L., Schooley, D.A., 1991. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. U. S. A. 88, 9458-9462.   DOI
15 LaFever, L., Drummond-Barbosa, D., 2005. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071-1073.   DOI
16 Meiselman, M., Lee, S.S., Tran, R.T., Dai, H., Ding, Y., Rivera-Perez, C., Wijesekera, T.P., Dauwalder, B., Noriega, F.G., Adams, M.E., 2017. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 114, E3849-E3858.
17 Moshitzky, P., Fleischmann, I., Chaimov, N., Saudan, P., Klauser, S., Kubli, E., Applebaum, S.W., 1996. Sex-peptide Activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch. Insect Biochem. Physiol. 32, 363-374.   DOI
18 Baker, F.C., Tsai, L.W., Reuter, C.C., Schooley, D.A., 1987. In vivo fluctuation of JH, JH acid, and ecdysteroid titer, and JH esterase activity, during development of fifth stadium Manduca sexta. Insect Biochem. 17, 989-996.   DOI
19 Bownes, M., Rembold, H., 1987. The titre of juvenile hormone during the pupal and adult stages of the life cycle of Drosophila melanogaster. Eur. J. Biochem. 164, 709-712.   DOI
20 Boucher, J., Kleinridders, A., Kahn, C.R., 2014. Insulin receptor signaling in normal and Insulin resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191.   DOI
21 Feng, K., Palfreyman, M.T., Hasemeyer, M., Talsma, A., Dickson, B.J., 2014. Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83, 135-148.   DOI
22 Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., Bohlen, P., 1988. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291-298.   DOI
23 Pilpel, N., Nezer, I., Applebaum, S.W., Heifetz, Y., 2008. Matingincreases trypsin in female Drosophila hemolymph. Insect Biochem. Mol. Biol. 38, 320-330.   DOI
24 Spradling, A.C., 1993. Developmental genetics of oogenesis, in: Bate, M., Ariasm, A.M. (Eds.), The Development of Drosophila melanogaster. Cold Spring Harbor Lab Press, New York, pp. 1-70.
25 Ameku, T., Niwa, R., 2016. Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 12, e1006123.   DOI
26 Daubnerova, I., Roller, L., Satake, H., Zhang, C., Kim, Y.J., Zitnan, D., 2021. Identification and function of ETH receptor networks in the silkworm Bombyx mori. Sci. Rep. 11, 1-23.   DOI
27 Yang, C. H., Rumpf, S., Xiang, Y., Gordon, M.D., Song, W., Jan, L.Y., Jan, Y.N., 2009. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519-526.   DOI
28 Yapici, N., Kim, Y.J., Ribeiro, C., Dickson, B.J., 2008. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33-37.   DOI
29 Zhang, C., Kim, A. J., Rivera Perez, C., Noriega, F.G., Kim, Y.J., 2022. The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 13, 969.   DOI
30 Areiza, M., Nouzova, M., Rivera-Perez, C., Noriega, F.G., 2014. Ecdysis triggering hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult mosquitoes. Insect Biochem. Mol. Biol. 54, 98-105.   DOI
31 Hasemeyer, M., Yapici, N., Heberlein, U., Dickson, B.J., 2009. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511-518.   DOI
32 Ikeya, T., Galic, M., Belawat, P., Nairz, K., Hafen, E., 2002. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293-1300.   DOI
33 Jang, Y.H., Chae, H.S., Kim, Y.J., 2017. Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat. Commun. 8, 1-12.   DOI
34 Jia, D., Xu, Q., Xie, Q., Mio, W., Deng, W.M., 2016. Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci. Rep. 6, 1-12.   DOI
35 Zhang, C., Daubnerova, I., Jang, Y.H., Kondo, S., Zitnan, D., Kim, Y.J., 2021. The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc. Natl. Acad. Sci. U. S. A. 118, e2016878118   DOI
36 Zitnan, D., Kingan, T.G., Hermesman, J.L., Adams, M.E., 1996. Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science 271, 88-91.   DOI
37 Ojima, N., Hara, Y., Ito, H., Yamamoto, D., 2018. Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet. 14, 1-15.
38 Wang, F., Wang, K., Forknall, N., Patrick, C., Yang, T., Parekh, R., Bock, D., Dickson, B.J., 2020. Neural circuitry linking mating and egg laying in Drosophila females. Nature. 579, 101-105.   DOI
39 Park, Y., Kim, Y.J., Dupriez, V., Adams, M.E., 2003. Two subtypes of ecdysis-triggering hormone receptor in Drosophila melanogaster. J. Biol. Chem. 278, 17710-17715.   DOI
40 Park, Y., Filippov, V., Gill, S.S., Adams, M.E., 2002. Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development 129, 493-503.   DOI
41 Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M.F., Smith, H.K., Partridge, L., 2003. The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proc. Natl. Acad. Sci. U. S. A. 100, 9923-9928.   DOI
42 Iversen, A., Cazzamali, G., Williamson, M., Hauser, F., Grimmelikhuijzen, C.J.P., 2002. Molecular identification of the first insect ecdysis triggering hormone receptors. Biochem. Biophys. Res. Commun. 299, 924-931.   DOI
43 Nagy, D., Cusumano, P., Andreatta, G., Anduaga, A.M., Hermann-Luibl, C., Reinhard, N., Gesto, J., Wegener, C., Mazzotta, G., Rosato, E., Kyriacou, C.P., Helfrich-Forster, C., Costa, R., 2019. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet. 15, 1-25.
44 Niimi, S., Sakurai, S., 1997. Development changes in juvenile hormone and juvenile hormone acid titers in the hemolymph and in vitro juvenile hormone synthesis by corpora allata of the silkworm, Bombyx mori. J. Insect Physiol. 43, 875-884.   DOI
45 Postlethwait, J.H., Handler, A.M., 1979. The roles of juvenile hormone and 20-hydroxy-ecdysone during vitellogenesis in isolated abdomens of Drosophila melanogaster. J. Insect Physiol. 25, 455-460.   DOI
46 Pritchett, T.L., Tanner, E.A., McCall, K., 2009. Cracking open cell death in the Drosophila ovary. Apoptosis 14, 969-979.   DOI
47 Riddiford, L.M., 1993. Hormones and Drosophila development, in: Bate, M., Ariasm, A.M. (Eds.), The development of Drosophila melanogaster. Cold Spring Harbor Lab Press, New York, pp. 899-939
48 Wang, C., Zhang, J., Tobe, S.S., Bendena, W.G., 2012. Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen. Comp. Endocrinol. 176, 347-353.   DOI