DOI QR코드

DOI QR Code

곤충의 페로몬 생합성 활성화 신경펩타이드(PBAN)

Pheromone Biosynthesis Activating Neuropeptide (PBAN) in Insects

  • 투고 : 2022.01.16
  • 심사 : 2022.02.11
  • 발행 : 2022.03.01

초록

신경펩타이드(Neuropeptide)는 신경세포에서 분비되는 단백질성 물질로, 곤충 호르몬에서 가장 큰 그룹으로 차지한다. 이들은 곤충의 전 생육단계에 걸쳐 지방체의 항상성, 섭식, 소화, 배설, 순환, 번식, 탈피/변태 등 다양한 생리적 기능과 행동을 조절하는데 관여하고 있다. 신경호르몬 일종인 PRXamide (NH2) 펩타이드 계열 호르몬은 카르복실기 끝에 PRX (X, 다양한 아미노산)라는 공통의 아미노산 서열이 특징적으로 존재하고 있으며, 곤충 전반에 걸쳐 발견된다. 곤충에서PRX 신경호르몬은 다양한 생물학적 기능에 관련하고 있는데 호르몬구조와 기능에 따라 크게 3가지로 분류한다. Pyrokinin (PK)계열의 호르몬은 페로몬 생합성 활성화 신경펩타이드(pheromone biosynthesis activating neuropeptide, PBAN) 및 휴면 호르몬(diapause hormone, DH)이 속하며, 카파(CAPA) 펩타이드 호르몬, 그리고 탈피촉진 호르몬(ecdysis trigging hormone, ETH)이 여기에 속한다. PK 계열의 PBAN 호르몬은 지금으로부터 약 30년전 나방에서 처음 밝혀졌으며, 성페로몬 생합성을 자극하는 신경호르몬으로 확인되었다. 그 이후, PBAN의 연구는 절지동물 전반에 걸쳐 다양한 연구자들에 의하여 광범위하게 이루어졌다. 본 종설은 PBAN의 유전자 구조와 발현, PBAN에 의한 세포신호 전달과 성페로몬 생합성에 관련된 생리적 기작, 그리고 신경호르몬과 PBAN을 이용한 새로운 해충 방제법 개발의 가능성과 예를 소개한다.

Neuropeptides produced in neurosecretory cells are the largest group of insect hormones. They regulate various physiological functions, such as fat body homeostasis, feeding, digestion, excretion, circulation, reproduction, metamorphosis, and behavior throughout all life stages. The PRXamide peptide family (X, a variable amino acid) is a well-characterized neuropeptide component with a common amino acid sequence, PRXamide (NH2), at the C-terminal end conserved across Insecta. The PRXamide peptides are classified into three subfamilies, each having diverse biological roles in insects: (1) pyrokinin (PK) includes the pheromone biosynthesis activating neuropeptide (PBAN) and the diapause hormone (DH), (2) the capability (CAPA) peptides, and (3) the ecdysis-triggering hormone (ETH). PBAN as a member of PK subfamily was first identified to stimulate pheromone biosynthesis in moths three decades ago. Since then, PBAN peptides have been extensively studied by various research groups from a broad spectrum of arthropods. In this paper, we briefly review insect PBAN molecules with emphasis on gene structure and expression, signal transduction, physiological mechanism in sex pheromone biosynthesis, and application for pest management.

키워드

과제정보

The author dedicates this paper to the late Professor Kyung Saeng Boo, his forever supervisor, who initiated this project on the PBAN in sex pheromone biosynthesis three decades ago. He thanks Bri Price and Hojung Yoon for reading and editing an early version.

참고문헌

  1. Abernathy, R.L., Teal, P.E., Meredith, J.A., Nachman, R.J., 1996. Induction of pheromone production in a moth by topical application of a pseudopeptide mimic of a pheromonotropic neuropeptide. Proc. Natl. Acad. Sci. U. S. A. 93, 12621-12625. https://doi.org/10.1073/pnas.93.22.12621
  2. Ahn, S.J., Choi, M.Y., 2018. Identification and characterization of capa and pyrokinin genes in the brown marmorated stink bug, Halyomorpha halys (Hemiptera): Gene structure, immunocytochemistry, and differential expression. Arch. Insect Biochem. Physiol. 99, e21500. https://doi.org/10.1002/arch.21500
  3. Ahn, S.J., Mc Donnell, R.J., Corcoran, J.A., Martin, R.C., Choi, M.Y., 2020. Identification and functional characterization of the first molluscan neuromedin U receptor in the slug, Deroceras reticulatum. Sci. Rep. 10, 22308. https://doi.org/10.1038/s41598-020-79047-x
  4. Alford, L., Marley, R., Dornan, A., Pierre, J.S., Dow, J.A., Nachman, R.J., Davies, S.A., 2019. Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. Pest. Manag. Sci. 75, 1750-1759. https://doi.org/10.1002/ps.5372
  5. Altstein, M., 2001. Insect neuropeptide antagonists. Biopolymers 60, 460-473. https://doi.org/10.1002/1097-0282(2001)60:6<460::AID-BIP10181>3.0.CO;2-Y
  6. Altstein, M., 2004a. Novel insect control agents based on neuropeptide antagonists: The PK/PBAN family as a case study. J. Mol. Neurosci. 22, 147-157. https://doi.org/10.1385/JMN:22:1-2:147
  7. Altstein, M., 2004b. Role of neuropeptides in sex pheromone production in moths. Peptides 25, 1491-1501. https://doi.org/10.1016/j.peptides.2004.06.020
  8. Altstein, M., Ben-Aziz, O., Daniel, S., Schefler, I., Zeltser, I., Gilon, C., 1999. Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide, inhibit sex pheromone biosynthesis in moths. J. Biol. Chem. 274, 17573-17579. https://doi.org/10.1074/jbc.274.25.17573
  9. Altstein, M., Ben-Aziz, O., Schefer, I., Zeltser, I., Gilon, C., 2000. Advances in the application of neuropeptides in insect control. Crop. Protection. 19, 547-555. https://doi.org/10.1016/S0261-2194(00)00071-5
  10. Altstein, M., Ben-Aziz, O., Zeltser, I., Bhargava, K., Davidovitch, M., Strey, A., Pryor, N., Nachman, R.J., 2007. Inhibition of PK/PBAN-mediated functions in insects: discovery of selective and non-selective inhibitors. Peptides 28, 574-584. https://doi.org/10.1016/j.peptides.2006.11.018
  11. Altstein, M., Nassel, D.R., 2010. Neuropeptide signaling in insects, in: Geary, T.G., Maule, A.G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. Springer, New York, pp. 155-165.
  12. Audsley, N., Down, R.E., 2015. G protein coupled receptors as targets for next generation pesticides. Insect Biochem. Mol. Biol. 67, 27-37. https://doi.org/10.1016/j.ibmb.2015.07.014
  13. Audsley, N., Weaver, R.J., 2009. Neuropeptides associated with the regulation of feeding in insects. Gen. Comp. Endocrinol. 162, 93-104. https://doi.org/10.1016/j.ygcen.2008.08.003
  14. Bader, R., Colomb, J., Pankratz, B., Schrock, A., Stocker, R.F., Pankratz, M.J., 2007a. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. J. Comp. Neurol. 502, 848-856. https://doi.org/10.1002/cne.21342
  15. Bader, R., Wegener, C., Pankratz, M.J., 2007b. Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN). Fly 1, 228-231. https://doi.org/10.4161/fly.4749
  16. Baggerman, G., Boonen, K., Verleyen, P., De Loof, A., Schoofs, L., 2005. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J. Mass. Spectrom. 40, 250-260. https://doi.org/10.1002/jms.744
  17. Baggerman, G., Cerstiaens, A., De Loof, A., Schoofs, L., 2002. Peptidomics of the larval Drosophila melanogaster central nervous system. J. Biol. Chem. 277, 40368-40374. https://doi.org/10.1074/jbc.M206257200
  18. Ben-Aziz, O., Zeltser, I., Altstein, M., 2005. PBAN selective antagonists: inhibition of PBAN induced cuticular melanization and sex pheromone biosynthesis in moths. J. Insect Physiol. 51, 305-314. https://doi.org/10.1016/j.jinsphys.2004.11.017
  19. Ben-Aziz, O., Zeltser, I., Bhargava, K., Davidovitch, M., Altstein, M., 2006. Backbone cyclic pheromone biosynthesis activating neuropeptide (PBAN) antagonists: inhibition of melanization in the moth Spodoptera littoralis (Insecta, Lepidoptera). Peptides 27, 2147-2156. https://doi.org/10.1016/j.peptides.2006.04.001
  20. Bendena, W.G., 2010. Neuropeptide Physiology in Insects, in: Geary, T.G., Maule, A.G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. Springer, New York, pp. 166-191.
  21. Bloch, G., Hazan, E., Rafaeli, A., 2013. Circadian rhythms and endocrine functions in adult insects. J. Insect Physiol. 59, 56-69. https://doi.org/10.1016/j.jinsphys.2012.10.012
  22. Blomquist, G.J., Vogt, R.G., 2020. Insect pheromone biochemistry and molecular biology, 2 ed. Elsevier, Cambridge.
  23. Boo, K.S., 2001. Insect hormones and their actions. Korean J. Appl. Entomol 40, 155-196.
  24. Caers, J., Verlinden, H., Zels, S., Vandersmissen, H.P., Vuerinckx, K., Schoofs, L., 2012. More than two decades of research on insect neuropeptide GPCRs: an overview. Front. Endocrinol. (Lausanne) 3, 151. https://doi.org/10.3389/fendo.2012.00151
  25. Chen, Y., Liu, Y., Tian, H., Chen, Y., Lin, S., Mao, Q., Zheng, N., Zhao, J., Gu, X., Wei, H., 2019. Distribution of pheromone biosynthesis-activating neuropeptide in the central nervous system of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 112, 2638-2648.
  26. Choi, M.Y., Ahn, S.J., Kim, A.Y., Koh, Y., 2017. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii. Gen. Comp. Endocrinol. 246, 354-362. https://doi.org/10.1016/j.ygcen.2017.01.011
  27. Choi, M.Y., Ahn, S.J., Park, K.C., Vander Meer, R., Carde, R.T., Jurenka, R.A., 2016. Tarsi of male Heliothine moths contain aldehydes and butyrate esters as potential pheromone components. J. Chem. Ecol. 42, 425-432. https://doi.org/10.1007/s10886-016-0701-3
  28. Choi, M.Y., Estep, A., Sanscrainte, N., Becnel, J., Vander Meer, R.K., 2013. Identification and expression of PBAN/diapause hormone and GPCRs from Aedes aegypti. Mol. Cell. Endocrinol. 375, 113-120. https://doi.org/10.1016/j.mce.2013.05.019
  29. Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R.A., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl. Acad. Sci. U. S. A. 100, 9721-9726. https://doi.org/10.1073/pnas.1632485100
  30. Choi, M.Y., Groot, A., Jurenka, R.A., 2005. Pheromone biosynthetic pathways in the moths Heliothis subflexa and Heliothis virescens. Arch. Insect Biochem. Physiol. 59, 53-58. https://doi.org/10.1002/arch.20051
  31. Choi, M.Y., Han, K.S., Boo, K.S., Jurenka, R.A., 2002. Pheromone biosynthetic pathways in the moths Helicoverpa zea and Helicoverpa assulta. Insect Biochem. Mol. Biol. 32, 1353-1359. https://doi.org/10.1016/S0965-1748(02)00055-3
  32. Choi, M.Y., Jurenka, R.A., 2004. PBAN stimulation of pheromone biosynthesis by inducing calcium influx in pheromone glands of Helicoverpa zea. J. Insect Physiol. 50, 555-560. https://doi.org/10.1016/j.jinsphys.2004.04.001
  33. Choi, M.Y., Jurenka, R.A., 2006a. C75, a fatty acid synthase inhibitor, inhibits feeding activity and pheromone production in a moth, Helicoverpa zea. J. Asia Pac. Entomol. 9, 43-48. https://doi.org/10.1016/S1226-8615(08)60274-5
  34. Choi, M.Y., Jurenka, R.A., 2006b. Role of extracellular Ca2+ and calcium channel activated by a G protein-coupled receptor regulating pheromone production in Helicoverpa zea (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 99, 905-909. https://doi.org/10.1603/0013-8746(2006)99[905:ROECAC]2.0.CO;2
  35. Choi, M.Y., Kohler, R., Vander Meer, R.K., Neupert, S., Predel, R., 2014. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS ONE 9, e94274. https://doi.org/10.1371/journal.pone.0094274
  36. Choi, M.Y., Lee, J.M., Han, K.S., Boo, K.S., 2004. Identification of a new member of PBAN family and immunoreactivity in the central nervous system from Adoxophyes sp. (Lepidoptera: Tortricidae). Insect Biochem. Mol. Biol. 34, 927-935. https://doi.org/10.1016/j.ibmb.2004.06.003
  37. Choi, M.Y., Lim, H., Park, K.C., Adlof, R., Wang, S., Zhang, A., Jurenka, R.A., 2007. Identification and biosynthetic studies of the hydrocarbon sex pheromone in Utetheisa ornatrix. J. Chem. Ecol. 33, 1336-1345. https://doi.org/10.1007/s10886-007-9306-1
  38. Choi, M.Y., Rafaeli, A., Jurenka, R.A., 2001. Pyrokinin/PBANl-ike peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res. 306, 459-465. https://doi.org/10.1007/s00441-001-0467-x
  39. Choi, M.Y., Sanscrainte, N.D., Estep, A.S., Vander Meer, R.K., Becnel, J.J., 2015. Identification and expression of a new member of the pyrokinin/pban gene family in the sand fly Phlebotomus papatasi. J. Insect Physiol. 79, 55-62. https://doi.org/10.1016/j.jinsphys.2015.06.001
  40. Choi, M.Y., Tanaka, M., Kataoka, H., Boo, K.S., Tatsuki, S., 1998a. Isolation and identification of the cDNA encoding the pheromone biosynthesis activating neuropeptide and additional neuropeptides in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 28, 759-766. https://doi.org/10.1016/S0965-1748(98)00065-4
  41. Choi, M.Y., Tatsuki, S., Boo, K.S., 1998b. Regulation of sex pheromone biosynthesis in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 44, 653-658. https://doi.org/10.1016/S0022-1910(98)00029-8
  42. Choi, M.Y., Vander Meer, R.K., 2009. Identification of a new member of the PBAN family of neuropeptides from the fire ant, Solenopsis invicta. Insect Mol. Biol. 18, 161-169. https://doi.org/10.1111/j.1365-2583.2009.00867.x
  43. Choi, M.Y., Vander Meer, R.K., 2012a. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS ONE 7, e50400. https://doi.org/10.1371/journal.pone.0050400
  44. Choi, M.Y., Vander Meer, R.K., 2012b. Molecular structure and diversity of PBAN/pyrokinin family peptides in ants. Front. Endocrinol. (Lausanne) 3, 32. https://doi.org/10.3389/fendo.2012.00032
  45. Choi, M.Y., Vander Meer, R.K., 2019. Phenotypic effects of PBAN RNAi using oral delivery of dsRNA to corn earworm (Lepidoptera: Noctuidae) and tobacco budworm larvae. J. Econ. Ent. 112, 434-439. https://doi.org/10.1093/jee/toy356
  46. Choi, M.Y., Vander Meer, R.K., 2021. GPCR-based bioactive peptide screening using phage-displayed peptides and an insect cell system for insecticide discovery. Biomolecules 11.
  47. Choi, M.Y., Vander Meer, R.K., Coy, M., Scharf, M.E., 2012. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J. Insect. Physiol. 58, 1159-1165. https://doi.org/10.1016/j.jinsphys.2012.06.005
  48. Choi, M.Y., Vander Meer, R.K., Shoemaker, D., Valles, S.M., 2011. PBAN gene architecture and expression in the fire ant, Solenopsis invicta. J. Insect Physiol. 57, 161-165. https://doi.org/10.1016/j.jinsphys.2010.10.008
  49. Christensen, T.A., Hildebrand, J.G., 1995. Neural regulation of sex pheromone glands in Lepidoptera. Invert. Neurosci. 1, 97-103. https://doi.org/10.1007/BF02331907
  50. Christensen, T.A., Itagaki, H., Teal, P.E., Jasensky, R.D., Tumlinson, J.H., Hildebrand, J.G., 1991. Innervation and neural regulation of the sex pheromone gland in female Heliothis moths. Proc. Natl. Acad. Sci. U. S. A. 88, 4971-4975. https://doi.org/10.1073/pnas.88.11.4971
  51. Christensen, T.A., Lashbrook, J.M., Hildebrand, J.G., 1994. Neural activation of the sex-pheromone gland in the moth Manduca sexta: real-time measurement of pheromone release. Physiological Entomology 19, 265-270. https://doi.org/10.1111/j.1365-3032.1994.tb01051.x
  52. Dou, X., Liu, S., Ahn, S.J., Choi, M.Y., Jurenka, R.A., 2019. Transcriptional comparison between pheromone gland-ovipositor and tarsi in the corn earworm moth Helicoverpa zea. Comp. Biochem. Physiol. Part D Genomics Proteomics 31, 100604. https://doi.org/10.1016/j.cbd.2019.100604
  53. Du, M., Zhao, W., Jurenka, R., Liu, X., Yin, X., Song, Q., An, S., 2017. Transcriptome analysis of Helicoverpa armigera male hairpencils: Alcohol biosynthesis and requirement for mating success. Insect Biochem. Mol. Biol. 87, 154-164. https://doi.org/10.1016/j.ibmb.2017.07.001
  54. Fleites, L.A., Johnson, R., Kruse, A.R., Nachman, R.J., Hall, D.G., MacCoss, M., Heck, M.L., 2020. Peptidomics approaches for the identification of bioactive molecules from Diaphorina citri. J. Proteome. Res. 19, 1392-1408. https://doi.org/10.1021/acs.jproteome.9b00509
  55. Fonagy, A., Matsumoto, S., Uchhiumi, K., Mitsui, T., 1992. Role of calcium ion and cyclic nucleotides in pheromone production in Bombyx mori. J. Pesticide. Science. 17, 115-121. https://doi.org/10.1584/jpestics.17.2_115
  56. Gade, G., Goldsworthy, G.J., 2003. Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest. Manag. Sci. 59, 1063-1075. https://doi.org/10.1002/ps.755
  57. Gade, G., Hoffmann, K.H., 2005. Neuropeptides regulating development and reproduction in insects. Physiol. Entomol. 30, 103-121. https://doi.org/10.1111/j.1365-3032.2005.00442.x
  58. Garczynski, S.F., Hendrickson, C.A., Harper, A., Unruh, T.R., Dhingra, A., Ahn, S.J., Choi, M.Y., 2019. Neuropeptides and peptide hormones identified in codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Arch. Insect. Biochem. Physiol. 101, e21587. https://doi.org/10.1002/arch.21587
  59. Gazit, Y., Dunkelblum, E., Benichis, M., Altstein, M., 1990. Effect of synthetic PBAN and derived peptides on sex pheromone biosynthesis in Heliothis peltigera (Lepidoptera: Noctuidae). Insect Biochem. 20, 853-858. https://doi.org/10.1016/0020-1790(90)90104-3
  60. Grimmelikhuijzen, C.J., Cazzamali, G., Williamson, M., Hauser, F., 2007. The promise of insect genomics. Pest Manag. Sci. 63, 413-416. https://doi.org/10.1002/ps.1352
  61. Gui, S.H., Taning, C.N., De Schutter, K., Yang, Q., Chen, P., Hamshou, M., Nachman, R.J., Pandit, A.A., Dow, J.A., Davies, S., Smagghe, G., 2020. Assessment of insecticidal effects and selectivity of CAPA-PK peptide analogues against the peach-potato aphid and four beneficial insects following topical exposure. Pest Manag. Sci. 76, 3451-3458. https://doi.org/10.1002/ps.5971
  62. Hariton, A., Ben-Aziz, O., Davidovitch, M., Altstein, M., 2010. Bioavailability of backbone cyclic PK/PBAN neuropeptide antagonists--inhibition of sex pheromone biosynthesis elicited by the natural mechanism in Heliothis peltigera females. FEBS J. 277, 1035-1044. https://doi.org/10.1111/j.1742-4658.2009.07547.x
  63. Hariton, A., Ben-Aziz, O., Davidovitch, M., Nachman, R.J., Altstein, M., 2009a. Bioavailability of insect neuropeptides: the PK/PBAN family as a case study. Peptides 30, 1034-1041. https://doi.org/10.1016/j.peptides.2009.02.005
  64. Hariton, A., Ben-Aziz, O., Davidovitch, M., Zubrzak, P., Nachman, R.J., Altstein, M., 2009b. Bioavailability of beta-amino acid and C-terminally derived PK/PBAN analogs. Peptides 30, 2174-2181. https://doi.org/10.1016/j.peptides.2009.05.011
  65. Holman, G.M., Cook, B.J., Nachman, R.J., 1986. Isolation, primary structure and synthesis of a blocked neuropeptide isolated from the cockroach, Leucophaea maderae. Comp. Biochem. Physiol. 85C, 219-224.
  66. Hull, J.J., Brent, C.S., Choi, M.Y., Miko, Z., Fodor, J., Fonagy, A., 2021. Molecular and functional characterization of Pyrokinin-like peptides in the western tarnished plant bug Lygus hesperus (Hemiptera: Miridae). Insects 12.
  67. Hull, J.J., Ohnishi, A., Moto, K., Kawasaki, Y., Kurata, R., Suzuki, M.G., Matsumoto, S., 2004. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. J. Biol. Chem. 279, 51500-51507. https://doi.org/10.1074/jbc.M408142200
  68. Iglesias, F., Marco, M.P., Jacquin Joly, E., Camps, F., Fabrias, G., 1998. Regulation of sex pheromone biosynthesis in two noctuid species, S. littoralis and M. brassicae, may involve both PBAN and the ventral nerve cord. Arch. Insect. Biochem. Physiol. 37, 295-304. https://doi.org/10.1002/(SICI)1520-6327(1998)37:4<295::AID-ARCH5>3.0.CO;2-Q
  69. Imai, K., Konno, T., Nakazawa, Y., Komiya, T., Isobe, M., Koga, K., Goto, T., Yaginuma, T., Sakakibara, K., Hasegawa, K., Yamashita, 1991. Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc. Japan Acad. 67(B), 98-101. https://doi.org/10.2183/pjab.67.98
  70. Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rossler, W., Simpson, J.H., Strausfeld, N.J., Strauss, R., Vosshall, L.B., Insect Brain Name Working, G., 2014. A systematic nomenclature for the insect brain. Neuron 81, 755-765. https://doi.org/10.1016/j.neuron.2013.12.017
  71. Jacquin, E., Jurenka, R.A., Ljungberg, H., Nagnan, P., Lofstedt, C., Descoins, C., Roelofs, W.L., 1994. Control of sex-pheromone biosynthesis in the moth Mamestra brassicae by the pheromone biosynthesis activating neuropeptide. Insect Biochem. Mol. Biol. 24, 203-211. https://doi.org/10.1016/0965-1748(94)90086-8
  72. Jiang, H., Wei, Z., Nachman, R.J., Kaczmarek, K., Zabrocki, J., Park, Y., 2015. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 68, 246-252. https://doi.org/10.1016/j.peptides.2014.11.004
  73. Jiang, H., Wei, Z., Nachman, R.J., Park, Y., 2014. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea. Peptides 53, 243-249. https://doi.org/10.1016/j.peptides.2013.11.005
  74. Jurenka, R., Nusawardani, T., 2011. The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains. Insect Mol. Biol. 20, 323-334. https://doi.org/10.1111/j.1365-2583.2010.01065.x
  75. Jurenka, R.A., 1996. Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch. Insect Biochem. Physiol. 33, 245-258. https://doi.org/10.1002/(SICI)1520-6327(1996)33:3/4<245::AID-ARCH6>3.0.CO;2-R
  76. Jurenka, R.A., 2003. Biochemistry of female moth sex pheromones, in: Blomquist, G., Vogt, R. (Eds.), Insect Pheromone Biochemistry and Molecular Biology. Academic Press, New York, pp. 53-80.
  77. Jurenka, R.A., 2004. Insect Pheromone Biosynthesis, in: Schulz, S. (Ed.), Topics in Current Chemistry. Springer, Berlin, pp. 97-239.
  78. Jurenka, R.A., 2015. The PRXamide neuropeptide signalling system: Conserved in animals, in: Jurenka, R.A. (Ed.), Advances in Insect Physiology. Elsevier, pp. 123-170.
  79. Jurenka, R.A., 2017. Regulation of pheromone biosynthesis in moths. Curr. Opin. Insect Sci. 24, 29-35. https://doi.org/10.1016/j.cois.2017.09.002
  80. Jurenka, R.A., Fabrias, G., DeVoe, L., Roelofs, W.L., 1994. Action of PBAN and related peptides on pheromone biosynthesis in isolated pheromone glands of the redbanded leafroller moth, Argyrotaenia velutinana. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 108, 153-160. https://doi.org/10.1016/1367-8280(94)90026-4
  81. Jurenka, R.A., Fabrias, G., Ramaswamy, S., Roelofs, W.L., 1993. Control of pheromone biosynthesis in mated redbanded leafroller moths. Arch. Insect. Biochem. Physiol. 24, 129-137. https://doi.org/10.1002/arch.940240303
  82. Jurenka, R.A., Fabrias, G., Roelofs, W.L., 1991a. Hormonal control of female sex pheromone biosynthesis in the redbanded leafroller moth, Argyrotaenia velutinana. Insect Biochem. 21, 81-89. https://doi.org/10.1016/0020-1790(91)90067-O
  83. Jurenka, R.A., Jacquin, E., Roelofs, W.L., 1991b. Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc. Natl. Acad. Sci. U. S. A. 88, 8621-8625. https://doi.org/10.1073/pnas.88.19.8621
  84. Jurenka, R.A., Rafaeli, A., 2011. Regulatory role of PBAN in sex pheromone biosynthesis of Heliothine moths. Front. Endocrinol. (Lausanne) 2, 46. https://doi.org/10.3389/fendo.2011.00046
  85. Jurenka, R.A., Subchev, M., Abad, J.L., Choi, M.Y., Fabrias, G., 2003. Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proc. Natl. Acad. Sci. U. S. A. 100, 809-814. https://doi.org/10.1073/pnas.0236060100
  86. Kim, Y.J., Nachman, R.J., Aimanova, K., Gill, S., Adams, M.E., 2008. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure-activity relationships of ligand analogs. Peptides 29, 268-275. https://doi.org/10.1016/j.peptides.2007.12.001
  87. Kitamura, A., Nagasawa, H., Kataoka, H., Inoue, T., Matsumoto, S., Ando, T., Suzuki, A., 1989. Amino acid sequence of pheromone biosynthesis activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 163, 520-526. https://doi.org/10.1016/0006-291X(89)92168-2
  88. Kuniyoshi, H., Nagasawa, H., Ando, T., Suzuki, A., 1992a. N-terminal modified analogs of C-terminal fragments of PBAN with pheromonotropic activity. Insect Biochem. Mol. Biol. 22, 399-403. https://doi.org/10.1016/0965-1748(92)90078-S
  89. Kuniyoshi, H., Nagasawa, H., Ando, T., Suzuki, A., Nachman, R.J., Holman, G.M., 1992b. Cross-activity between pheromone biosynthesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci. Biotechnol. Biochem. 56, 167-168. https://doi.org/10.1271/bbb.56.167
  90. Lajevardi, A., Paluzzi, J.V., 2020. Receptor characterization and functional activity of pyrokinins on the hindgut in the adult mosquito, Aedes aegypti. Front. Physiol. 11, 490. https://doi.org/10.3389/fphys.2020.00490
  91. Lee, D.W., Boo, K.S., 2005. Molecular characterization of pheromone biosynthesis activating neuropeptide from the diamondback moth, Plutella xylostella (L.). Peptides 26, 2404-2411. https://doi.org/10.1016/j.peptides.2005.04.016
  92. Lee, D.W., Shrestha, S., Kim, A.Y., Park, S.J., Yang, C.Y., Kim, Y., Koh, Y.H., 2011. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). Insect Biochem. Mol. Biol. 41, 236-243. https://doi.org/10.1016/j.ibmb.2011.01.001
  93. Li, Z.Q., Zhang, S., Luo, J.Y., Wang, C.Y., Lv, L.M., Dong, S.L., Cui, J.J., 2015. Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components. Sci. Rep. 5, 9324. https://doi.org/10.1038/srep09324
  94. Liu, N., Li, T., Wang, Y., Liu, S., 2021. G-protein coupled receptors (GPCRs) in insects-A potential target for new insecticide development. Molecules 26.
  95. Lu, Q., Huang, L.Y., Chen, P., Yu, J.F., Xu, J., Deng, J.Y., Ye, H., 2015. Identification and RNA Interference of the pheromone biosynthesis activating neuropeptide (PBAN) in the common cutworm moth Spodoptera litura (Lepidoptera: Noctuidae). J. Econ. Entomol. 108, 1344-1353. https://doi.org/10.1093/jee/tov108
  96. Ma, P.W., Garden, R.W., Niermann, J.T., M, O.C., Sweedler, J.V., Roelofs, W.L., 2000. Characterizing the Hez-PBAN gene products in neuronal clusters with immunocytochemistry and MALDI MS. J. Insect Physiol. 46, 221-230. https://doi.org/10.1016/S0022-1910(99)00174-2
  97. Ma, P.W., Knipple, D.C., Roelofs, W.L., 1994. Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis activating neuropeptide and other neuropeptides. Proc. Natl. Acad. Sci. U. S. A. 91, 6506-6510. https://doi.org/10.1073/pnas.91.14.6506
  98. Ma, P.W.K., Knipple, D.C., Roelofs, W.L., 1998. Expression of a gene that encodes pheromone biosynthesis activating neuropeptide in the central nervous system of corn earworm, Helicoverpa zea. Insect Biochem. Mol. Biol. 28, 373-385. https://doi.org/10.1016/S0965-1748(98)00009-5
  99. Ma, P.W.K., Ramaswamy, S., 2003. Biology and ultrastructure of sex pheromone producing tissue, in: Blomquist, G., Vogt, R. (Eds.), Pheromone biochemistry and molecular biology. Elsevier, London, pp. 19-51.
  100. Ma, P.W.K., Roelofs, W.L., 1995a. Calcium involvement in the stimulation of sex pheromone production by PBAN in the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Insect Biochem. Mol. Biol. 25, 467-473. https://doi.org/10.1016/0965-1748(94)00086-E
  101. Ma, P.W.K., Roelofs, W.L., 1995b. Sites of synthesis and release of PBAN-like factor in the female European corn borer, Ostrinia nubilalis. J. Insect Physiol. 41, 339-350. https://doi.org/10.1016/0022-1910(94)00112-T
  102. Ma, P.W.K., Roelofs, W.L., Jurenka, R.A., 1996. Characterization of PBAN and PBAN-encoding gene neuropeptides in the central nervous system of corn earworm moth, Helicoverpa zea. J. Insect Physiol. 42, 257-266. https://doi.org/10.1016/0022-1910(95)00114-X
  103. Marciniak, P., Pacholska-Bogalska, J., Szymczak, M., Rosinski, G., 2011. Molecular and physiological characterization of the pyrokinin insect neuropeptide family. Postepy Biochem. 57, 365-371.
  104. Marco, M.P., Fabrias, G., Lazaro, G., Camps, F., 1996. Evidence for both humoral and neural regulation of sex pheromone biosynthesis in Spodoptera littoralis. Arch. Insect. Biochem. Physiol. 31, 157-167. https://doi.org/10.1002/(SICI)1520-6327(1996)31:2<157::AID-ARCH4>3.0.CO;2-X
  105. Masler, E.P., Kelly, T.J., Menn, J.J., 1993. Insect neuropeptides: discovery and application in insect management. Arch. Insect. Biochem. Physiol. 22, 87-111. https://doi.org/10.1002/arch.940220109
  106. Matsumoto, S., Kitamura, A., Nagasawa, H., Kataoka, H., Orikasa, C., Mitsui, T., Suzuki, A., 1990. Functional diversity of a neurohormone produced by the suboesophageal ganglion: Molecular identity of melanization and reddish colouration hormone and pheromone biosynthesis activating neuropeptide. J. Insect Physiol. 36, 427-432. https://doi.org/10.1016/0022-1910(90)90060-S
  107. Matsumoto, S., Ozawa, R., Nagamine, T., Kim, G.H., Uchiumi, K., Shono, T., Mitsui, T., 1995a. Intracellular transduction in the regulation of pheromone biosynthesis of the silkworm, Bombyx mori: suggested involvement of calmodulin and phosphoprotein phosphatase. Biosci. Biotechnol. Biochem. 59, 560-562. https://doi.org/10.1271/bbb.59.560
  108. Matsumoto, S., Ozawa, R., Uchiumi, K., Kurihara, M., Mitsui, T., 1995b. Intracellular signal transduction of PBAN action in the common cutworm, Spodoptera litura: effects of pharmacological agents on sex pheromone production in vitro. Insect Biochem. Mol. Biol. 25, 1055-1059. https://doi.org/10.1016/0965-1748(95)00048-Z
  109. Matsumoto, S., Yamashita, O., Fonagy, A., Kurihara, M., Uchiumi, K., Nagamine, T., Mitsui, T., 1992. Functional diversity of a pheromonotropic neuropeptide - Induction of cuticular melanization and embryonic diapause in Lepidopteran Insects by Pseudaletia pheromonotropin. J. Insect Physiol. 38, 847-851. https://doi.org/10.1016/0022-1910(92)90095-U
  110. Melcher, C., Bader, R., Pankratz, M.J., 2007. Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J. Endocrinol. 192, 467-472. https://doi.org/10.1677/JOE-06-0066
  111. Melcher, C., Pankratz, M.J., 2005. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 3, e305. https://doi.org/10.1371/journal.pbio.0030305
  112. Meng, X., Wahlstrom, G., Immonen, T., Kolmer, M., Tirronen, M., Predel, R., Kalkkinen, N., Heino, T.I., Sariola, H., Roos, C., 2002. The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides. Mech. Dev. 117, 5-13. https://doi.org/10.1016/S0925-4773(02)00175-2
  113. Miyamoto, T., Yamamoto, M., Ono, A., Ohtani, K., Ando, T., 1999. Substrate specificity of the epoxidation reaction in sex pheromone biosynthesis of the Japanese giant looper (Lepidoptera: Geometridae). Insect Biochem. Mol. Biol. 29, 63-69. https://doi.org/10.1016/S0965-1748(98)00105-2
  114. Nachman, R.J., Ben Aziz, O., Davidovitch, M., Zubrzak, P., Isaac, R.E., Strey, A., Reyes-Rangel, G., Juaristi, E., Williams, H.J., Altstein, M., 2009a. Biostable beta-amino acid PK/PBAN analogs: agonist and antagonist properties. Peptides 30, 608-615. https://doi.org/10.1016/j.peptides.2008.11.007
  115. Nachman, R.J., Holman, G.M., Cook, B.J., 1986. Active fragments and analogs of the insect neuropeptide leucopyrokinin: structure-function studies. Biochem. Biophys. Res. Commun. 137, 936-942. https://doi.org/10.1016/0006-291X(86)90315-3
  116. Nachman, R.J., Holman, G.M., Haddon, W.F., 1993. Leads for insect neuropeptide mimetic development. Arch. Insect. Biochem. Physiol. 22, 181-197. https://doi.org/10.1002/arch.940220115
  117. Nachman, R.J., Kim, Y.J., Wang, X.J., Etzkorn, F.A., Kaczmarek, K., Zabrocki, J., Adams, M.E., 2009b. Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor. Bioorg. Med. Chem. 17, 4216-4220. https://doi.org/10.1016/j.bmc.2009.03.036
  118. Nachman, R.J., Teal, P.E., Aziz, O.B., Davidovitch, M., Zubrzak, P., Altstein, M., 2009c. An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a Heliothine insect. Peptides 30, 616-621. https://doi.org/10.1016/j.peptides.2008.09.024
  119. Nachman, R.J., Teal, P.E., Radel, P.A., Holman, G.M., Abernathy, R.L., 1996. Potent pheromonotropic/myotropic activity of a carboranyl pseudotetrapeptide analogue of the insect pyrokinin/PBAN neuropeptide family administered via injection or topical application. Peptides 17, 747-752. https://doi.org/10.1016/0196-9781(96)00111-8
  120. Nachman, R.J., Teal, P.E., Ujvary, I., 2001. Comparative topical pheromonotropic activity of insect pyrokinin/PBAN amphiphilic analogs incorporating different fatty and/or cholic acid components. Peptides 22, 279-285. https://doi.org/10.1016/S0196-9781(00)00380-6
  121. Nachman, R.J., Wang, X.J., Etzkorn, F.A., Aziz, O.B., Davidovitch, M., Kaczmarek, K., Zabrocki, J., Strey, A., Pryor, N., Altstein, M., 2009d. Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays. Peptides 30, 1254-1259. https://doi.org/10.1016/j.peptides.2009.04.017
  122. Nassel, D.R., 2002. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog. Neurobiol. 68, 1-84. https://doi.org/10.1016/S0301-0082(02)00057-6
  123. Nassel, D.R., Homberg, U., 2006. Neuropeptides in interneurons of the insect brain. Cell Tissue Res. 326, 1-24. https://doi.org/10.1007/s00441-006-0210-8
  124. Nassel, D.R., Winther, A.M., 2002. Neuronal co-localization of different isoforms of tachykinin-related peptides (LemTRPs) in the cockroach brain. Cell Tissue Res. 308, 225-239. https://doi.org/10.1007/s00441-002-0538-7
  125. Nassel, D.R., Winther, A.M., 2010. Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42-104. https://doi.org/10.1016/j.pneurobio.2010.04.010
  126. Nassel, D.R., Zandawala, M., 2019. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog. Neurobiol. 179, 101607. https://doi.org/10.1016/j.pneurobio.2019.02.003
  127. Ohnishi, A., Hull, J.J., Matsumoto, S., 2006. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc. Natl. Acad. Sci. U. S. A. 103, 4398-4403. https://doi.org/10.1073/pnas.0511270103
  128. Pietrantonio, P.V., Xiong, C., Nachman, R.J., Shen, Y., 2018. G protein-coupled receptors in arthropod vectors: omics and pharmacological approaches to elucidate ligand-receptor interactions and novel organismal functions. Curr. Opin. Insect Sci. 29, 12-20. https://doi.org/10.1016/j.cois.2018.05.016
  129. Plech, A., Rykaczewska-Czerwinska, M., Konopinska, D., 2004. Leucopyrokinin (LPK) analog [d-Ala(5)]-[2-8]-LPK inhibits LPK-induced analgesia in rats. Peptides 25, 1005-1011. https://doi.org/10.1016/j.peptides.2004.03.023
  130. Predel, R., Neupert, S., Garczynski, S.F., Crim, J.W., Brown, M.R., Russell, W.K., Kahnt, J., Russell, D.H., Nachman, R.J., 2010. Neuropeptidomics of the mosquito Aedes aegypti. J. Proteome Res. 9, 2006-2015. https://doi.org/10.1021/pr901187p
  131. Rafaeli, A., 2009. Pheromone biosynthesis activating neuropeptide (PBAN): regulatory role and mode of action. Gen. Comp. Endocrinol. 162, 69-78. https://doi.org/10.1016/j.ygcen.2008.04.004
  132. Rafaeli, A., Bober, R., Becker, L., Choi, M.Y., Fuerst, E.J., Jurenka, R.A., 2007. Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol. Biol. 16, 287-293. https://doi.org/10.1111/j.1365-2583.2007.00725.x
  133. Rafaeli, A., Gileadi, C., 1995. Modulation of the PBAN-stimulated pheromonotropic activity in Helicoverpa armigera. Insect Biochem. Mol. Biol. 25, 827-834. https://doi.org/10.1016/0965-1748(95)00019-R
  134. Rafaeli, A., Gileadi, C., 1996. Down regulation of pheromone biosynthesis: cellular mechanisms of pheromonostatic responses. Insect Biochem. Mol. Biol. 26, 797-807. https://doi.org/10.1016/S0965-1748(96)00029-X
  135. Rafaeli, A., Soroker, V., 1994. Second messenger interactions in response to PBAN stimulation of pheromone gland cultures., in: Borkovec, A., Loeb, M.J. (Eds.), Insect Neurochemistry and Neurophysiology. CRC Press, Boca Raton.
  136. Raina, A.K., 1993. Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Annu. Rev. Entomol. 38, 329-349. https://doi.org/10.1146/annurev.en.38.010193.001553
  137. Raina, A.K., Jaffe, H., Kempe, T.G., Keim, P., Blacher, R.W., Fales, H.M., Riley, C.T., Klun, J.A., Ridgway, R.L., Hayes, D.K., 1989. Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244, 796-798. https://doi.org/10.1126/science.244.4906.796
  138. Raina, A.K., Kempe, T.G., 1990. A pentapeptide of the C-terminal sequence of PBAN with pheromonotropic activity. Insect Biochem. 20, 849-851. https://doi.org/10.1016/0020-1790(90)90103-2
  139. Raina, A.K., Klun, J.A., 1984. Brain factor control of sex pheromone production in the female corn earworm moth. Science 225, 531-533. https://doi.org/10.1126/science.225.4661.531
  140. Raina, A.K., Rafaeli, A., Kingan, T.G., 1994. Pheromonotropic activity of orally administered PBAN and its analogues in Helicoverpa zea. J. Insect Physiol. 40, 393-397. https://doi.org/10.1016/0022-1910(94)90157-0
  141. Raina, A.K., Wergin, W.P., Murphy, C.A., Erbe, E.F., 2000. Structural organization of the sex pheromone gland in Helicoverpa zea in relation to pheromone production and release. Arthropod Struct. Dev. 29, 343-353. https://doi.org/10.1016/S1467-8039(01)00014-7
  142. Ramaswamy, S.B., Jurenka, R.A., Linn, C.E., Jr., Roelofs, W.L., 1995. Evidence for the presence of a pheromonotropic factor in hemolymph and regulation of sex pheromone production in Helicoverpa zea. J. Insect Physiol. 41, 501-508. https://doi.org/10.1016/0022-1910(94)00131-Y
  143. Ramaswamy, S.B., Mbata, G.N., Cohen, N.E., Moore, A., Cox, N.M., 1994. Pheromonotropic and pheromonostatic activity in moths. Arch. Insect. Biochem. Physiol. 25, 301-315. https://doi.org/10.1002/arch.940250406
  144. Sato, Y., Oguchi, M., Menjo, N., Imai, K., Saito, H., Ikeda, M., Isobe, M., Yamashita, O., 1993. Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc. Natl. Acad. Sci. U. S. A. 90, 3251-3255. https://doi.org/10.1073/pnas.90.8.3251
  145. Scherkenbeck, J., Zdobinsky, T., 2009. Insect neuropeptides: struc tures, chemical modifications and potential for insect control. Bioorg. Med. Chem. 17, 4071-4084. https://doi.org/10.1016/j.bmc.2008.12.061
  146. Schoofs, L., De Loof, A., Van Hiel, M.B., 2017. Neuropeptides as Regulators of Behavior in Insects. Annu. Rev. Entomol. 62, 35-52. https://doi.org/10.1146/annurev-ento-031616-035500
  147. Schoofs, L., Vanden Broeck, J., De Loof, A., 1993. The myotropic peptides of Locusta migratoria: structures, distribution, functions and receptors. Insect Biochem. Mol. Biol. 23, 859-881. https://doi.org/10.1016/0965-1748(93)90104-Z
  148. Senthilkumar, R., Srinivasan, R., 2019. Sex-specific spatial and temporal gene expressions of pheromone biosynthesis activating neuropeptide (PBAN) and binding proteins (PBP/OBP) in Spoladea recurvalis. Sci. Rep. 9, 3515. https://doi.org/10.1038/s41598-019-39822-x
  149. Shi, Y., Nachman, R.J., Gui, S.H., Piot, N., Kaczmarek, K., Zabrocki, J., Dow, J.A.T., Davies, S.A., Smagghe, G., 2021. Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peach-potato aphid (Myzus persicae). Insect Sci. (in press).
  150. Southey, B.R., Sweedler, J.V., Rodriguez-Zas, S.L., 2008. Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24, 815-825. https://doi.org/10.1093/bioinformatics/btn044
  151. Suang, S., Manaboon, M., Singtripop, T., Hiruma, K., Kaneko, Y., Tiansawat, P., Neumann, P., Chantawannakul, P., 2017. Larval diapause termination in the bamboo borer, Omphisa fuscidentalis. PLoS ONE 12, e0174919. https://doi.org/10.1371/journal.pone.0174919
  152. Sun, J.S., Zhang, T.Y., Zhang, Q.R., Xu, W.H., 2003. Effect of the brain and suboesophageal ganglion on pupal development in Helicoverpa armigera through regulation of FXPRLamide neuropeptides. Regul. Pept. 116, 163-171. https://doi.org/10.1016/j.regpep.2003.09.002
  153. Teal, P.E., Meredith, J.A., Nachman, R.J., 1999a. Comparison of rates of penetration through insect cuticle of amphiphylic analogs of insect pyrokinin neuropeptides. Peptides 20, 63-70. https://doi.org/10.1016/S0196-9781(98)00154-5
  154. Teal, P.E., Nachman, R.J., 1997. Prolonged pheromonotropic activity of pseudopeptide mimics of insect pyrokinin neuropeptides after topical application or injection into a moth. Regul. Pept. 72, 161-167. https://doi.org/10.1016/S0167-0115(97)01053-7
  155. Teal, P.E., Tumlinson, J.H., Oberlander, H., 1989. Neural regulation of sex pheromone biosynthesis in Heliothis moths. Proc. Natl. Acad. Sci. U. S. A. 86, 2488-2492. https://doi.org/10.1073/pnas.86.7.2488
  156. Teal, P.E.A., Davis, N.T., Meredith, J.A., Christensen, T.A., Hildebrand, J.G., 1999b. Role of the ventral nerve cord and terminal abdominal ganglion in the regulation of sex pheromone production in the tobacco budworm (Lepidoptera : noctuidae). Ann. Entomol. Soc. Am. 92, 891-901. https://doi.org/10.1093/aesa/92.6.891
  157. Thyagaraja, B.S., Raina, A.K., 1994. Regulation of pheromone production in the gypsy moth, Lymantria dispar, and development of an in vivo bioassay. J. Insect Physiol. 40, 969-974. https://doi.org/10.1016/0022-1910(94)90135-X
  158. Tillman, J.A., Seybold, S.J., Jurenka, R.A., Blomquist, G.J., 1999. Insect pheromones-an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29, 481-514. https://doi.org/10.1016/S0965-1748(99)00016-8
  159. Van Hiel, M.B., Van Loy, T., Poels, J., Vandersmissen, H.P., Verlinden, H., Badisco, L., Broeck, J.V., 2010. Neuropeptide receptors as possible targets for development of insect pest control agents, in: Geary, T.G., Maule, A.G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. Springer, New York, pp. 211-226.
  160. Vanden Broeck, J., 2001. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241-254. https://doi.org/10.1016/S0196-9781(00)00376-4
  161. Veenstra, J.A., 2000. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect. Biochem. Physiol. 43, 49-63. https://doi.org/10.1002/(SICI)1520-6327(200002)43:2<49::AID-ARCH1>3.0.CO;2-M
  162. Veenstra, J.A., 2016. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen. Comp. Endocrinol. 229, 41-55. https://doi.org/10.1016/j.ygcen.2015.11.019
  163. Watanabe, K., Hull, J.J., Niimi, T., Imai, K., Matsumoto, S., Yaginuma, T., Kataoka, H., 2007. FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol. Cell. Endocrinol. 273, 51-58. https://doi.org/10.1016/j.mce.2007.05.008
  164. Wegener, C., Reinl, T., Jansch, L., Predel, R., 2006. Direct mass spectrometric peptide profiling and fragmentation of larval peptide hormone release sites in Drosophila melanogaster reveals tagmaspecific peptide expression and differential processing. J. Neurochem. 96, 1362-1374. https://doi.org/10.1111/j.1471-4159.2005.03634.x
  165. Wei, W., Miyamoto, T., Endo, M., Murakawa, T., Pu, G.Q., Ando, T., 2003. Polyunsaturated hydrocarbons in the hemolymph: biosynthetic precursors of epoxy pheromones of geometrid and arctiid moths. Insect Biochem. Mol. Biol. 33, 397-405. https://doi.org/10.1016/S0965-1748(03)00002-X
  166. Wei, W., Yamamoto, M., Asato, T., Fujii, T., Pu, G.Q., Ando, T., 2004a. Selectivity and neuroendocrine regulation of the precursor uptake by pheromone glands from hemolymph in geometrid female moths, which secrete epoxyalkenyl sex pheromones. Insect Biochem. Mol. Biol. 34, 1215-1224. https://doi.org/10.1016/j.ibmb.2004.08.004
  167. Wei, Z.-J., Hong, G.-Y., Jinag, S.-T., Tong, Z.-X., Lu, C., 2008. Characters and expression of the gene encoding DH, PBAN and other FXPRLamide family neuropeptides in Antheraea pernyi. J. Appl. Entomol. 132, 59-67. https://doi.org/10.1111/j.1439-0418.2007.01249.x
  168. Wei, Z.-J., Zhang, T.Y., Sun, J.S., Xu, A.Y., Xu, W.H., Denlinger, D.L., 2004b. Molecular cloning, developmental expression, and tissue distribution of the gene encoding DH, PBAN and other FXPRL neuropeptides in Samia cynthia ricini. J. Insect Physiol. 50, 1151-1161. https://doi.org/10.1016/j.jinsphys.2004.10.007
  169. Xiong, C., Yang, Y., Nachman, R.J., Pietrantonio, P.V., 2021. Tick CAPA propeptide cDNAs and receptor activity of endogenous tick pyrokinins and analogs: Towards discovering pyrokinin function in ticks. Peptides 146, 170665. https://doi.org/10.1016/j.peptides.2021.170665
  170. Xu, W., Sato, Y., Yamashita, O., 1999. Molecular characterization of the cDNA encoding diapause hormone and pheromone biosynthesis activating neuropeptide in Bombyx mandarina. J. Seri. Sci. Jpn. 68, 373-379.
  171. Xu, W.H., Denlinger, D.L., 2003. Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol. Biol. 12, 509-516. https://doi.org/10.1046/j.1365-2583.2003.00437.x
  172. Xu, W.H., Sato, Y., Ikeda, M., Yamashita, O., 1995. Stage-dependent and temperature-controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. J. Biol. Chem. 270, 3804-3808. https://doi.org/10.1074/jbc.270.8.3804
  173. Yeoh, J.G.C., Pandit, A.A., Zandawala, M., Nassel, D.R., Davies, S.A., Dow, J.A.T., 2017. DINeR: Database for insect neuropeptide research. Insect Biochem. Mol. Biol. 86, 9-19. https://doi.org/10.1016/j.ibmb.2017.05.001
  174. Zdarek, J., Nachman, R.J., Hayes, T.K., 1997. Insect neuropeptides of the pyrokinin/PBAN family accelerate pupariation in the fleshfly (Sarcophaga bullata) larvae. Ann. N. Y. Acad. Sci. 814, 67-72. https://doi.org/10.1111/j.1749-6632.1997.tb46145.x
  175. Zdarek, J., Nachman, R.J., Hayes, T.K., 1998. Structure-activity relationships of insect neuropeptides of the pyrokinin/PBAN family and their selective action on pupariation in flesh fly (Neobelleria bullata) larvae (Diptera, Sarcophagidae). Eur. J. Entomol. 95, 9-16.
  176. Zeltser, I., Ben-Aziz, O., Schefler, I., Bhargava, K., Altstein, M., Gilon, C., 2001. Insect neuropeptide antagonist. Part II. Synthesis and biological activity of backbone cyclic and precyclic PBAN antagonists. J. Pept. Res. 58, 275-284. https://doi.org/10.1034/j.1399-3011.2001.00914.x
  177. Zeltser, I., Gilon, C., Ben-Aziz, O., Schefler, I., Altstein, M., 2000. Discovery of a linear lead antagonist to the insect pheromone biosynthesis activating neuropeptide (PBAN). Peptides 21, 1457-1465. https://doi.org/10.1016/S0196-9781(00)00298-9
  178. Zhang, Q., Nachman, R.J., Zubrzak, P., Denlinger, D.L., 2009. Conformational aspects and hyperpotent agonists of diapause hormone for termination of pupal diapause in the corn earworm. Peptides 30, 596-602. https://doi.org/10.1016/j.peptides.2008.07.006
  179. Zhang, Q.R., Nachman, R.J., Kaczmarek, K., Zabrocki, J., Denlinger, D.L., 2011. Disruption of insect diapause using agonists and an antagonist of diapause hormone. Proc. Natl. Acad. Sci. U. S. A. 108, 16922-16926. https://doi.org/10.1073/pnas.1113863108
  180. Zhang, T.Y., Sun, J.S., Zhang, L.B., Shen, J.L., Xu, W.H., 2004. Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J. Insect Physiol. 50, 25-33. https://doi.org/10.1016/j.jinsphys.2003.09.006
  181. Zhu, J.W., Millar, J., Lofstedt, C., 1995. Hormonal regulation of sex pheromone biosynthesis in the turnip moth, Agrotis segetum. Arch. Insect. Biochem. Physiol. 30, 41-59. https://doi.org/10.1002/arch.940300104
  182. Zubrzak, P., Williams, H., Coast, G.M., Isaac, R.E., Reyes-Rangel, G., Juaristi, E., Zabrocki, J., Nachman, R.J., 2007. Beta-amino acid analogs of an insect neuropeptide feature potent bioactivity and resistance to peptidase hydrolysis. Biopolymers 88, 76-82. https://doi.org/10.1002/bip.20638