• Title/Summary/Keyword: Severe Acute Respiratory Syndrome Coronavirus 2

Search Result 188, Processing Time 0.024 seconds

COVID-19 Risk Factors Among Health Workers: A Rapid Review

  • Mhango, Malizgani;Dzobo, Mathias;Chitungo, Itai;Dzinamarira, Tafadzwa
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.262-265
    • /
    • 2020
  • Coronavirus disease 2019 (Covid-19) poses an important occupational health risk to health workers (HWs) that has attracted global scrutiny. To date, several thousand HWs globally have been reported as infected with the severe acute respiratory syndrome coronavirus 2 virus that causes the disease. It is therefore a public health priority for policymakers to understand risk factors for this vulnerable group to avert occupational transmission. A rapid review was carried out on 20 April 2020 on Covid-19 risk factors among HWs in PubMed, Google Scholar, and EBSCOHost Web (Academic Search Complete, CINAHL Complete, MEDLINE with Full Text, CINAHL with Full Text, APA PsycInfo, Health Source-Consumer Edition, Health Source: Nursing/Academic Edition) and WHO Global Database. We also searched for preprints on the medRxiv database. We searched for reports, reviews, and primary observational studies (case control, case cross-over, cross-sectional, and cohort). The review included studies conducted among HWs with Covid-19 that reported risk factors irrespective of their sample size. Eleven studies met the inclusion criteria. Lack of personal protective equipment, exposure to infected patients, work overload, poor infection control, and preexisting medical conditions were identified as risk factors for Covid-19 among HWs. In the context of Covid-19, HWs face an unprecedented occupational risk of morbidity and mortality. There is need for rapid development of sustainable measures that protect HWs from the pandemic.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Tani, Hideki;Kobayashi, Ayako;Gohda, Jin;Kawaguchi, Yasushi;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Alkattan, Abdallah
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.282-289
    • /
    • 2021
  • A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

Association of Comorbidities With Pneumonia and Death Among COVID-19 Patients in Mexico: A Nationwide Cross-sectional Study

  • Hernandez-Vasquez, Akram;Azanedo, Diego;Vargas-Fernandez, Rodrigo;Bendezu-Quispe, Guido
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.4
    • /
    • pp.211-219
    • /
    • 2020
  • Objectives: The goal of this study was to identify chronic conditions and multimorbidity patterns in patients with coronavirus disease 2019 (COVID-19) and to examine their associations with pneumonia and death. Methods: This cross-sectional study analyzed the official data of COVID-19 patients in Mexico through May 18, 2020 (released by the Secretaría de Salud de México). Adjusted logistic regression models were applied to assess the associations of comorbidities with pneumonia and death. The marginal effects were estimated, and the probability of pneumonia or death according to the number of comorbidities was graphed for each year of age. Results: Of the 51 053 COVID-19 patients enrolled in the final analysis, 27 667 (54.2%) had no chronic conditions, while 13 652 (26.7%), 6518 (12.8%) and 3216 (6.3%) were reported to have 1, 2, and 3 or more simultaneous conditions, respectively. Overall, a significant incremental gradient was observed for the association between multimorbidity and pneumonia (p<0.001); for 2 chronic conditions, the adjusted odds ratio (aOR) was 2.07 (95% confidence interval [CI], 1.95 to 2.20), and for ≥3 conditions, the aOR was 2.40 (95% CI, 2.22 to 2.60). A significant incremental gradient was also found for the relationship between multimorbidity and death (p<0.001); an aOR of 2.51 (95% CI, 2.30 to 2.73) was found for 2 chronic conditions and an aOR of 3.49 (95% CI, 3.15 to 3.86) for ≥3 conditions. Conclusions: Underlying chronic conditions and multimorbidity are associated with pneumonia and death in Mexican COVID-19 patients. Future investigation is necessary to clarify the pathophysiological processes behind this association, given the high burden of chronic diseases in various countries, including Mexico.

SARS-CoV-2 Delta (B.1.617.2) Variant: A Unique T478K Mutation in Receptor Binding Motif (RBM) of Spike Gene

  • Hyunjhung Jhun;Ho-Young Park;Yasmin Hisham;Chang-Seon Song;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.32.1-32.14
    • /
    • 2021
  • Over two hundred twenty-eight million cases of coronavirus disease 2019 (COVID-19) in the world have been reported until the 21st of September 2021 after the first rise in December 2019. The virus caused the disease called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 4 million deaths blame COVID-19 during the last one year and 8 months in the world. Currently, four SARS-CoV-2 variants of concern are mainly focused by pandemic studies with limited experiments to translate the infectivity and pathogenicity of each variant. The SARS-CoV-2 α, β, γ, and δ variant of concern was originated from United Kingdom, South Africa, Brazil/Japan, and India, respectively. The classification of SARS-CoV-2 variant is based on the mutation in spike (S) gene on the envelop of SARS-CoV-2. This review describes four SARS-CoV-2 α, β, γ, and δ variants of concern including SARS-CoV-2 ε, ζ, η, ι, κ, and B.1.617.3 variants of interest and alert. Recently, SARS-CoV-2 δ variant prevails over different countries that have 3 unique mutation sites: E156del/R158G in the N-terminal domain and T478K in a crucial receptor binding domain. A particular mutation in the functional domain of the S gene is probably associated with the infectivity and pathogenesis of the SARS-CoV-2 variant.

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

Alternative and Rapid Detection Methods for Wastewater Surveillance of SARS-CoV-2 (SARS-CoV-2의 하수조사를 위한 대체 및 신속 검출 방법)

  • Jesmin Akter;Bokjin Lee;Jai-Yeop Lee;Chang Hyuk Ahn;Nishimura Fumitake;ILHO KIM
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.19-35
    • /
    • 2024
  • The global pandemic, coronavirus disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the implementation of wastewater surveillance as a means to monitor the spread of SARS-CoV-2 prevalence in the community. The challenging aspect of establishing wastewater surveillance requires a well-equipped laboratory for wastewater sample analysis. According to previous studies, RT-PCR-based molecular tests are the most widely used and popular detection method worldwide. However, this approach for the detection or quantification of SARS-CoV-2 from wastewater demands a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically takes 6 to 8 hours to provide results for a few samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at regional laboratories. In some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories. The ongoing research and development of alternative and rapid technologies, namely RT-LAMP, ELISA, Biosensors, and GeneXpert, offer a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses. This study aims to discuss the effective regional rapid detection and quantification methods in community wastewater.

Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target

  • Jaewoo Hong;Hyunjhung Jhun;Yeo-Ok Choi;Afeisha S. Taitt;Suyoung Bae;Youngmin Lee;Chang-seon Song;Su Cheong Yeom;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.8.1-8.17
    • /
    • 2021
  • The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.

In-depth Correlation Analysis of SARS-CoV-2 Effective Reproduction Number and Mobility Patterns: Three Groups of Countries

  • Setti, Mounir Ould;Tollis, Sylvain
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.2
    • /
    • pp.134-143
    • /
    • 2022
  • Objectives: Many governments have imposed-and are still imposing-mobility restrictions to contain the coronavirus disease 2019 (COVID-19) pandemic. However, there is no consensus on whether policy-induced reductions of human mobility effectively reduce the effective reproduction number (Rt) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies based on country-restricted data reported conflicting trends in the change of the SARS-CoV-2 Rt following mobility restrictions. The objective of this study was to examine, at the global scale, the existence of regional specificities in the correlations between Rt and human mobility. Methods: We computed the Rt of SARS-CoV-2 using data on worldwide infection cases reported by the Johns Hopkins University, and analyzed the correlation between Rt and mobility indicators from the Google COVID-19 Community Mobility Reports in 125 countries, as well as states/regions within the United States, using the Pearson correlation test, linear modeling, and quadratic modeling. Results: The correlation analysis identified countries where Rt negatively correlated with residential mobility, as expected by policymakers, but also countries where Rt positively correlated with residential mobility and countries with more complex correlation patterns. The correlations between Rt and residential mobility were non-linear in many countries, indicating an optimal level above which increasing residential mobility is counterproductive. Conclusions: Our results indicate that, in order to effectively reduce viral circulation, mobility restriction measures must be tailored by region, considering local cultural determinants and social behaviors. We believe that our results have the potential to guide differential refinement of mobility restriction policies at a country/regional resolution.

SARS-CoV-2 IgG Antibody Seroprevalence in Children from the Amritsar District of Punjab

  • Kaur, Amandeep;Singh, Narinder;Singh, Kanwardeep;Sidhu, Shailpreet Kaur;Kaur, Harleen;Jain, Poonam;Kaur, Manmeet;Jairath, Mohan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • The majority of the children experience milder coronavirus disease 2019 (COVID-19) symptoms. Children represent a significant source of community transmission. Children under 18 years of age account for an estimated 4.8% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections globally. However, no conclusive statements pertaining to the multi-fold aspects of the virus in children could be drawn due to the lower prevalence of pediatric cases. The present study was conducted to identify the indirect impact of SARS-CoV-2 infections on developing herd immunity among children in the age group 3 to 18 years by investigating their antibody levels. In the study, 240 children aged 3~18 years were recruited by the Department of Pediatrics, Government Medical College and Hospital, Amritsar, India, and quantification of the antibodies was performed at the Viral Research and Diagnostic Laboratory (VRDL), Government Medical College (GMC), Amritsar, India. Out of the 240 serum samples, 197 (82.08%) showed seropositivity, while 43 (17.92%) were seronegative. When stratified, it was observed that in the age group 3~6 years, 22.33% of children were found to have anti-SARS-CoV-2 antibodies while in the age groups 7~10 years, 11~14 years, and 15~18 years, respectively, 37.06%, 30.46%, and 10.15% were seropositive. Although there was seroconversion among children which was useful for predicting the next wave, no differences in seropositivity were observed between adults and children.