• 제목/요약/키워드: Settlement estimation

검색결과 212건 처리시간 0.024초

철도 레일빔 설계법에 대한 연구 (Design of the Railbeam Lengths at the Roadbed)

  • 정혁상
    • 한국지반환경공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.21-28
    • /
    • 2016
  • 본 논문은 레일빔의 길이 산정에 관해서 지반공학적 측면에서 다룬 내용을 담고 있다. 레일빔은 철도횡단공사에서 가설기간 중에 부등침하 방지 목적으로 레일의 내측과 외측에 설치하는 보강레일을 말한다. 이러한 레일빔은 최근 철도를 횡단하는 지하 구조물의 시공이 증가해서 기존 철도 시설물의 안정에 대응하고자 많이 설치하고 있다. 그러나 레일빔 길이 설계에 관한 기준이 없어 설계에 어려움이 있을 뿐만 아니라 레일빔 길이 부족으로 탈선사고까지 이어지는 경우가 발생하고 있다. 따라서 본 연구에서는 레일빔 길이 산정 방식에 대하여 토사지반과 암반지반으로 분류하여 Flow chart를 제시하였으며 레일 조합 및 위치에 대한 Case study를 실시하여 효과적인 레일의 조합과 위치에 확보할 수 있었다.

건조 고결층이 형성된 준설 매립 지반의 지지력 산정에 대한 연구 (Bearing Capacity Evaluation of Marine Clay Dredged Deposit Including Desiccated Crust Layer)

  • 박현구;변위용;지성현;이승래
    • 한국지반공학회논문집
    • /
    • 제23권5호
    • /
    • pp.89-100
    • /
    • 2007
  • 본 연구에서는 건조 고결층이 형성된 준설 매립 지반의 지반 개량 및 보강을 위한 시공 초기 단계에서 지반의 안정성과 장비의 주행성 평가 시 고려되는 지지력 산정과 관련하여 다양한 실내 및 현장 시험을 수행하였다. 지반조사를 통해 기본물성 특성을 파악하였고 현장 베인 시험 및 일축압축 직접전단시험을 통하여 지반의 깊이별 강도분포와 고결층의 강도 특성 및 응력-변형률 거동을 살펴보았다. 또한 지반의 지지력 평가와 하중-침하 곡선 및 파괴형태를 파악하기 위하여 평판재하시험을 수행하였다. 기존의 2층 지반 지지력 산정 기법을 이용하여 지지력을 산정하였으며 이를 평판재하시험 결과와 비교하여 지지력 산정 기법의 적용 방법에 대하여 논의해 보았다.

변형률 연화모델과 현장계측을 이용한 저토피 NATM터널의 변형해석 (Deformation Analysis of a Shallow NATM Tunnel using Strain Softening Model and Field Measurement)

  • 이재호;김영수;문홍득;김대만;김광일
    • 한국지반환경공학회 논문집
    • /
    • 제8권6호
    • /
    • pp.29-36
    • /
    • 2007
  • 지표면 침하량, 침하 기울기 그리고 터널주변의 지반변위에 대한 관리와 예측은 도심지 터널 시공에 있어서 주요한 인자가 된다. 본 논문은 도심지 NATM터널의 변형거동에 대한 세밀한 분석을 위하여 사례분석과 수치해석적인 방법을 통하여 굴착에 따른 지반 평가와 거동 예측을 수행하였다. 수치해석적인 방법은 FLAC-2D 변형률 연화모델과 탄소성모델을 이용하였다. 현장계측은 지표면 침하와 지중변위를 수행하였으며, 계측결과는 시공중 설계물성치의 재설정에 이용되어졌다.

  • PDF

풍화암 지반에 설치된 소구경말뚝의 거동에 관한 연구 (An Experimental Study on the Behavior of Miscopiles installed in Weathered Weak Rock)

  • 박성재;정경환;이세훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.389-396
    • /
    • 1999
  • In this study compressive and tensile load tests have been performed to investigate reinforcing effect and load transfer mechanism of small diameter piles installed in the foundation soil for the marine suspension bridge. Load tests were carried out on steel plate with diameters of 50cm, 100cm and 150cm varying loads starting from 39 tons up to 314 tons. Small diameter piles were proved to behavior like as friction piles and loads were not transmitted to the bottom of piles. From pull-out tests, the uplift capacity of small diameter piles was largely influenced by reinforcing materials compared to frictional resistance between piles and adjacent soils. The bearing capacity of small diameter piles appeared to be higher than the ultimate bearing capacity evaluated using static formulae. The load carrying capacity of small diameter piles was superior to the bored piles with a similar size. Thus, ultimate bearing capacity estimated from static formulae can provide conservative designs and thereby resulting in economic disadvantages. A further study to accumulate data regarding various soil conditions is recommended for an improved estimation of bearing capacity of piles with small diameter.

  • PDF

대형평판재하시험의 지중응력 측정결과를 이용한 연암의 변형계수 산정 (Estimation of deformation modulus for rock mass using stress distribution under ground in Large Plate Load Test)

  • 박원태;이민희;최용규;김석찬;김정환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.539-545
    • /
    • 2010
  • The field plate test has a good potential for determining since it measures both plate pressure and settlement. The deformation modulus of rock mass is differently measured for status of structures. The values of deformation modulus are obtained from laboratory test (uniaxial and triaxial test) and field test (pressuremeter test). Plate load test should be conducted by different loading plate sizes for geological structure of rock mass and scale of structures. In this paper, large plate load tests were performed to predict of structure's behavior and evaluate the ultimate bearing capacity of the foundation on soft rock. Simultaneously, deformation modulus of rock mass was estimated by back analysis of stresses measured in field test under rock mass. Finally, we verified the validation of deformation modulus of rock mass through result of large plate load test and numerical simulation.

  • PDF

양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정 (Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests)

  • 정경자;조종석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF

압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계 (Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation)

  • 문준희;이봉구
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

샌드파일 주변지반에서 초기 방사방향 압축에 의한 압밀특성 연구 (A Study on Consolidation Characteristics by Considering the Initial Radial Compression at Sand Pile Adjacent Ground)

  • 천병식;여유현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.649-656
    • /
    • 2000
  • Consolidation of the ground surrounding the sand piles is delayed by well resistance and smear effect. This study is executed to understand the factors that affect the characteristics of consolidation. This was accomplished by utilizing the estimated and measured values of the soil properties through the monitoring of the ground surrounding the sand piles. When it is assumed that the horizontal coefficient is equal to the vertical coefficient of consolidation, the estimated values is exceedingly similar to the measured values. The properties of the initially disturbed soil by the sand pile installation seemed to improve through the process of consolidation with the passage of time. From the results of the analysis of the settlement measurement, the measured values occurred about 60~90% of the predicted values. Considering the initial radical compression deformation, according to the theory of cavity expansion, the difference between the two appears to be in good agreement. In this study, to understand the behavioral characteristics of the ground surrounding the sand piles requires estimation through considering the initial radial compression as well as smear effect of the soil disturbance and well resistance.

  • PDF

Fast analytical estimation of the influence zone depth, its numerical verification and FEM accuracy testing

  • Kuklik, Pavel;Broucek, Miroslav;Kopackova, Marie
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.635-647
    • /
    • 2009
  • For the calculation of foundation settlement it is recommended to take into account so called influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the region where the load has a substantial influence on the deformation of the soil skeleton. The soil skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation changes the original geostatic stress state and it creates the space for the load transferred from upper structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation. The depth of influence zone is calculated from the equality of the original geostatic stress and the new geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close formulas are presented for the influence zone calculation. Using ADINA code we carried out several numerical examples to verify the proposed analytical formulas and to enhance their use in civil engineering practice. Otherwise, the FEM code accuracy can be control.

연약점토층위 이층지반 지표면 재하시 지중응력 특성연구 (A Study on the Distribution Stresses beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers)

  • 이인형;임종석
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.47-57
    • /
    • 2005
  • Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research presents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer fur its vertical and horizontal stresses in (1) homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stresses fumed out to be different in the value of theoretical and actual measurement after the trial examination of model. This study has the purpose of suggesting the better construction method of running equipment on weak stratum by comparing the estimated value of trial experiment and theory on underground stress of the weak ground surface area and of raising up the necessity of the continuous research hereafter.