• Title/Summary/Keyword: Service Review

Search Result 3,826, Processing Time 0.031 seconds

Family-Friendly Community Characteristics and Life Satisfaction of Working Mothers with Elementary School-Age Children: Mediation Effects of Work-Family Conflict and Facilitation (가족친화적 지역사회 특성과 초등학령기 자녀를 둔 취업모의 삶의 만족도 : 일-가족 갈등 및 촉진의 매개효과)

  • Park, In-Sook
    • Journal of Family Resource Management and Policy Review
    • /
    • v.27 no.2
    • /
    • pp.1-17
    • /
    • 2023
  • This study examined the relationship between family-friendly community characteristics and the life satisfaction of working mothers with elementary school children, and investigated whether the relationship was mediated by work-family conflict and facilitation of working mothers. For the analysis, the study used the response data of 627 working mothers from the 11th wave of the Panel Study on Korean Children (PSKC, 2019) and multi-mediation effect analyses were conducted using PROCESS. The main results are as follows. First, the higher neighbor support, the higher the work-family facilitation, which significantly increased life satisfaction. Second, the appropriateness of parenting environment and community service infrastructure satisfaction showed significant indirect effects with life satisfaction through increasing work-family facilitation and lowering work-family conflict. Moreover, the appropriateness of parenting environment was positively related with life satisfaction and it was a only variable that was directly associated with life satisfaction. On the other hand, the convenient access to community service infrastructure was found to lower work-family facilitation and lower life satisfaction, confirming the need for follow-up studies. This study shows that the family-friendly characteristics of the community are important for working mothers with elementary school-age children and provides empirical evidence to improve the family-friendly community characteristics.

A Study on Development of Digital Curation Maturity Models and Indicators: Focusing on KISTI (디지털 큐레이션 성숙도 모델 및 지표 개발에 관한 연구: 한국과학기술정보연구원 디지털큐레이션센터를 중심으로)

  • Seonghun, Kim;Suelki, Do;Sangeun, Han;Jayhoon, Kim;Seokjong, Lim;Jinho, Park
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.269-306
    • /
    • 2022
  • This study aimed to develop indicators that can measure the digital transformation performance of science and technology information construction and sharing systems by utilizing the Digital Curation Maturity Models. For digital transformation, it is necessary to consider not only simple service improvement but also organizational and business changes. In this study, we aimed to develop a model for measuring the digital transformation of KISTI, Korea's representative science and technology information service organization. KISTI has already carried out BPR work for digital transformation and borrowed the concept of a maturity model. However, in BPR, there is no method to measure the result. Therefore, in this paper, we developed an index to measure digital transformation based on the maturity model. Indicator development was carried out in two ways: model development and evaluation. Cases for model construction were made through a comprehensive review of existing KISTI and various domestic and foreign cases. The models before verification were technology (37), data (45), strategy (18), organization (36), and (social)influence (14) based on the major categories. After verification using confirmatory factor analysis, the model is classified as technology (20 / 17 indicators dropped), data (36 / 9 indicators dropped), strategy (18 / maintenance), organization(30 / 6 indicators dropped), and (social) influence (13 indicators / 1 indicator dropped).

Effects of Perceived Control on Usage Intention toward Digital Finance Service: Moderating Role of Privacy Concern (사용자의 지각된 통제력이 디지털 금융서비스 이용의도에 미치는 영향: 프라이버시 염려 조절효과를 중심으로)

  • Jun Mo Kang;Cheol Park
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.161-181
    • /
    • 2023
  • As the post-COVID-19 consumer life environment is rapidly becoming non-face-to-face, changing non-face-to-face financial life services are having a significant impact on consumers' daily lives. People who do not have access to digital devices and services that have become essential goods are at risk of being left behind in the "digital blind spot," where they are marginalized not only in their daily lives but also in society and the economy as a whole (Kim Min-Jeung A, Kim Min-Jung B, Park Joo-Yung, 2022). In this study, we examined the effects of perceived control factors, Cognitive control, behavioral control, and decisional control, on intention to use digital finance. For this study, we surveyed 133 customers who are aware of and intend to use digital finance. The results show that cognitive control, behavioral control, and decisional control have significant effects on intention to use digital finance. In this relationship, the moderating effect of privacy concerns differs from the effect of decision control on intention to use digital finance. These findings suggest that digital financial services firms should consider whether to reduce or increase customer control. Based on these findings, we discuss marketing strategies and implications for digital financial services companies.

How Market Reacts on the Metaverse Initiatives? An Event Study (메타버스 투자 추진이 기업 가치에 미치는 영향 분석: 이벤트 연구 방법론)

  • Mina Baek;Jeongha Kim;Dongwon Lee
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.183-204
    • /
    • 2023
  • Due to the COVID-19 pandemic, lots of occasions need to be held in online environment. This is the reason why "Metaverse" gets lots of attention in 2021. A number of companies made announcements on Metaverse, and this situation also boomed stock market. This paper investigates the relationship between Metaverse initiatives and business value of the firm (i.e., stock prices). We examine this relationship by using event study method with Lexis-Nexis News data from 2019 to 2021. The results indicate that Metaverse initiatives significantly impact positive influence on firm's value. In the technological perspective, technical factors affect more positive market returns, including Metaverse enablers (e.g., NFT, VR devices, digital twin) and common infrastructure (e.g., semiconductor, AI, cloud), and especially virtual environment was emphasized. Additionally, in the strategical perspective, radical innovation (e.g., pivoting, acquisition) impact more positive market return rather than incremental innovation (e.g., partnership, investment). Also, firms from non-service industries can achieve benefits from Metaverse initiatives rather than service industry in some degree.

A Study on Reward-based Home-training App Users Using a Cash-cow User Prediction Model (캐시카우 사용자 예측 모델을 통한 리워드형 홈트레이닝 앱의 운영 및 관리 전략에 관한 연구)

  • Sanghwa Kim;Jinwook Choi;Byungwan Koh
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.183-198
    • /
    • 2021
  • Due to the Covid-19 pandemic, the home-training app market is growing rapidly and numerous apps are entering the market. It is becoming more difficult for an app to secure the profitability. In this study, by analyzing actual user data of a reward-based home-training app, we propose a model that predicts cash-cow users of the app. Cash-cow users are the users who watch in-stream ads to watch training videos although they cannot earn any rewards by doing so. Thus, these users make profits for the app yet do not incur any costs. The results of this study show that the users who irregularly watch training videos are more likely to be cash-cow users than the users who regularly watch training videos. This result suggests that, paradoxically, for sustainable profitability, home-training apps may need to find a way to retain the users who watch training videos irregularly so that they can be satisfied with the service and continue use the apps.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Consumer Heterogeneity and Price Promotion Effectiveness in Subscription-based Online Platforms (소비자 특성에 따른 가격 촉진 효과에 대한 실증 연구: 플랫폼 구독 경제를 중심으로)

  • Changkeun Kim;Byungjoon Yoo;Jaehwan Lee
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.143-156
    • /
    • 2020
  • Price promotion is one of the most frequently marketing strategies with a long history. According to various studies, the effect of price promotion is controversial. Some studies have argued that price promotion has a positive effect, while others have found that it has no effect or rather has a negative effect. This study aims to examine the effect of price promotion in a subscription-based service. First, we check the effect of price promotion on the repurchase of the consumer. And we investigate how this effect varies depending on the characteristics of the consumer. Using the data from one of the music streaming service in South Korea, the effect of consumers' price promotion experience, demographic characteristics, and behavioral characteristics on their repurchase is analyzed through logistic regression analysis. As a result of the study, it is found that consumers' experience of price promotion has a positive effect on repurchase. In addition, the positive effect of price promotion is relatively greater in younger and female consumers. This study has implications in that it not only confirmed the positive effect of price promotion in a subscription-based environment but also empirically confirmed that the characteristics of consumers should be considered when performing price promotion.

New Perspective for Performance Measurement of Digital Supply Chain Management (디지털 공급-수요 사슬 관리의 성과를 측정하기 위한 새로운 관점)

  • Ronja Rasche;DongBack Seo
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.139-162
    • /
    • 2023
  • With the emergence of new digital technologies into a supply chain, it is essential for companies to incorporate these technologies in managing their supply chains. However, various challenges have been identified in digital supply chain management, especially when it comes to its assessment. There are no universally agreed measurements for the performance of digital supply chain management within the research community so far. This paper explores an option of using user experience as one of possible measurements. Therefore, three different focus-group discussions were held and later analyzed with a qualitative content analysis. The subscription-based video on demand service, Netflix was used as an example in those discussions. Due to the fact that Netflix provides a digital product as a streamline service, user experience is critical for the company. Especially, user experience with a recommender system and related privacy issues have become significant for a company to retain existing customers and attract new customers in many fields. Since the recommender system and related privacy issues are parts of a digital supply chain, user experience can be one of appropriate measurements for digital supply chain management. This study opens a new perspective for research on performance measurements of digital supply chain management.

Financial Products Recommendation System Using Customer Behavior Information (고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발)

  • Hyojoong Kim;SeongBeom Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.111-128
    • /
    • 2023
  • With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.

The Influencing Mechanism of Manufacturing SMEs' Smart Factory Advancement Acceptance Intention: Based on the Information Systems Success Model (중소제조기업의 스마트팩토리 고도화수용의도 영향 메커니즘: 정보시스템 성공모형을 기반으로)

  • Yoon Jae Kim;Chang-Geun Jeong;Sung-Byung Yang
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.199-220
    • /
    • 2023
  • Projects to deploy and diffuse smart factories in South Korea are aimed at enhancing national manufacturing competitiveness. However, a significant portion of deployed companies remain at the basic stage and struggle to utilize smart factories regularly. Existing studies have primarily focused on the technical aspects of smart factories, using data analytics and case studies, leading to a gap in empirical research on continuous use and upgrade intentions. This study identifies key factors influencing smart factory usage and user satisfaction, drawing on the Information Systems Success Model (ISSM) and previous research. It empirically examines the impact of these factors on continuous use intention, management performance, and advancement acceptance intention through smart factory usage and user satisfaction. A structural equation model is employed to validate the research hypotheses, using survey data from 287 small and medium-sized manufacturing enterprises (SMEs) that have adopted smart factories. Results demonstrate that system quality, information quality, service quality, and government support significantly affect smart factory usage, while service quality and government support influence user satisfaction. Furthermore, smart factory usage and user satisfaction have positive effects on management performance, continuous use intention, and subsequently advancement acceptance intention. This study provides novel insights by demonstrating the specific impact mechanisms of smart factory user satisfaction on the business and the intentions of manufacturing SMEs regarding continuous use and advancement acceptance, leveraging the ISSM.