DOI QR코드

DOI QR Code

New Perspective for Performance Measurement of Digital Supply Chain Management

디지털 공급-수요 사슬 관리의 성과를 측정하기 위한 새로운 관점

  • Ronja Rasche (Program of Global Management on Information Science (GLOMIS), University of Hildesheim) ;
  • DongBack Seo (Department of Management Information Systems, Chungbuk National University)
  • ;
  • 서동백 (충북대학교 경영정보학과 )
  • Received : 2023.04.12
  • Accepted : 2023.06.29
  • Published : 2023.08.31

초록

With the emergence of new digital technologies into a supply chain, it is essential for companies to incorporate these technologies in managing their supply chains. However, various challenges have been identified in digital supply chain management, especially when it comes to its assessment. There are no universally agreed measurements for the performance of digital supply chain management within the research community so far. This paper explores an option of using user experience as one of possible measurements. Therefore, three different focus-group discussions were held and later analyzed with a qualitative content analysis. The subscription-based video on demand service, Netflix was used as an example in those discussions. Due to the fact that Netflix provides a digital product as a streamline service, user experience is critical for the company. Especially, user experience with a recommender system and related privacy issues have become significant for a company to retain existing customers and attract new customers in many fields. Since the recommender system and related privacy issues are parts of a digital supply chain, user experience can be one of appropriate measurements for digital supply chain management. This study opens a new perspective for research on performance measurements of digital supply chain management.

디지털 기술의 등장과 발전으로 기업은 디지털 기술을 공급-수요 사슬에 도입하여 관리하는 것이 필수적이 되었다. 그러나 이와 관련하여 여러 어려움, 그 중에서도 특히 디지털 공급-수요 사슬을 체계적으로 평가하는 어려움이 또한 늘고 있다. 그 이유는 산업계와 학계에 걸쳐 전반적으로 사용되는 표준화된 평가기준이 아직 부족하기 때문이다. 이에 따라, 본 논문에서는 사용자의 경험을 하나의 평가기준으로 제시하고자 한다. 따라서 세 개의 다른 포커스 그룹을 통해 데이터를 얻어 질적 분석 기법으로 연구하였다. 포커스 그룹 참여자들은 넷플릭스를 공급-수요 사슬의 예로 삼아 넷플릭스에 대한 사용 경험을 자유롭게 이야기 하였다. 넷플릭스는 디지털 콘텐츠, 즉 제품을 직접 소비자에게 전달하기 때문에 소비자의 일반적인 경험, 이 회사의 추천시스템에 대한 경험, 그리고 이와 관련된 정보 보안에 대한 인식이 매우 중요하다. 이러한 것들이 기존 고객의 만족도를 높이는 것은 물론, 새로운 고객의 유치에도 결정적인 역할을 할 수 있기 때문이다. 디지털 공급-수요 사슬에 대한 사용자의 일반적인 경험은 기업의 평가 척도에 중요하다. 또한 이러한 추천시스템과 이와 관련된 정보 보안은 디지털 공급-수요 사슬의 일부이다. 따라서 이에 대한 사용자의 경험과 인식을 측정하는 것은 디지털 공급-수요 사슬을 평가하는 데에 중요한 척도가 될 것이다.

키워드

과제정보

이 논문은 2022학년도 충북대학교 연구년제 지원에 의하여 연구되었음

참고문헌

  1. Acquisti, A. and J. Grossklags, "Privacy and rationality in individual decision making", IEEE Security & Privacy, Vol.3, No.1, 2005, pp. 26-33, Available at https://doi.org/10.1109/MSP.2005.22. 
  2. Agrawal, P. and R. Narain, "Digital supply chain management: An Overview", IOP Conference Series: Materials Science and Engineering, Vol.455, No.1. IOP Publishing, 2018. 
  3. Buyukozkan, G. and F. Gocer, "Digital supply chain: Literature review and a proposed framework for future research", Computers in Industry, Vol.97, 2018, pp. 157-177, Available at https://doi.org/10.1016/j.compind.2018.02.010. 
  4. Clement, M., C. Otten, R. Seifert, O. Kleinen, M.B. Houston, E.V. Karniouchina, and C. Heller, "IDEA FORUM: The impact of subscription-based video on demand on traditional distributors' value chains and business models", Journal of Media Economics, Vol 31, No.1 and 2, 2018, pp. 50-67, Available at https://doi.org/0.1080/08997764.2020.1796687.  1080/08997764.2020.1796687
  5. Doring, N. and J. Bortz, Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften, 5 Eds., Springer, Berlin/Heidelberg, 2016, Available at https://doi.org/10.1007/978-3-642-41089-5. 
  6. Elrod, C., S. Murray, and S. Bande, "A review of performance metrics for supply chain management", Engineering Management Journal, Vol.25, No.3, 2013, pp. 39-50, Available at https://doi.org/10.1080/10429247.2013.11431981. 
  7. Farajpour, F., A. Hassanzadeh, S. Elahi, and M. Ghazanfari, "Digital supply chain blueprint via a systematic literature review", Technological Forecasting and Social Change, Vol.184, 2022, p. 121976. 
  8. Fleenor, J.W., J.B. Fleenor, and W.F. Grossnickle, "Inter-rater reliability and agreement of performance ratings: A methodological comparison", Journal of Business and Psychology, Vol.10, No.3, 1996, pp. 367-380.  https://doi.org/10.1007/BF02249609
  9. Garay-Rondero, C.L., J.L. Martinez-Flores, N.R. Smith, S.O.C. Morales, and A. Aldrette-Malacara, "Digital supply chain model in Industry 4.0", Journal of Manufacturing Technology Management, Vol.31, No.5, 2020, pp. 887-933.  https://doi.org/10.1108/JMTM-08-2018-0280
  10. Gomez-Uribe, C. and N. Hunt, "The Netflix recommender system: Algorithms, business value, and innovation", ACM Trans. Manage. Inf. Syst, Vol.6, No.4, 2016, Available at https://doi.org/10.1145/2843948. 
  11. Hadida, A. L., J. Lampel, W.D. Walls, and A. Joshi, "Hollywood studio filmmaking in the age of Netflix: A tale of two institutional logics", J Cult Econ, Vol.45, 2021, pp. 213-238, Available at https://doi.org/10.1007/s10824-020-09379-z. 
  12. Lamkhede, S. and C. Kofler, "Recommendations and results organization in Netflix search", Fifteenth ACM Conference on Recommender Systems (RecSys '21), 2021, Available at https://doi.org/10.1145/3460231.3474602. 
  13. Lotz, A.D., "In between the global and the local: Mapping the geographies of Netflix as a multinational service", International Journal of Cultural Studies, Vol.24, No.2, 2021, pp. 195-215, Available at https://doi.org/10.1177/1. 
  14. Mayring, P., "Qualitative content analysis", Forum: Qualitative Social Research, Vol.1, No.2, 2000, Available at http://nbnresolving.de/urn:nbn:de:0114-fqs0002204. 
  15. Mayring, P, Qualitative inhaltsanalyse - grundlagen und techniken, 13. Eds., Beltz, Weinheim, 2022. 
  16. McKelvey, F. and R. Hunt, "Discoverability: Toward a definition of content discovery through platforms", Social Media + Society, Vol.5, No.1, 2019, Available at https://doi.org/10.1177/2056305118819188. 
  17. Miles, M. B. and A. M. Huberman, Qualitative Data Analysis: An Expanded Sourcebook, Sage, Thousand Oaks, 1994. 
  18. Min, S., Z. G. Zacharia, and C. D. Smith, "Defining supply chain management: In the past, present, and future", Journal of Business Logistics, Vol.40, No 1, 2019, pp. 44-55, Available at https://doi.org/10.1111/jbl.12201. 
  19. Netflix, "Die Geschichte von Netflix", 2019, Available at https://about.netflix.com/de. 
  20. Rasool, F., M. Greco, and M. Grimaldi, "Digital supply chain performance metrics: a literature review", Measuring Business Excellence, Vol.26, No.1, 2022, pp. 23-38, Available at https://doi.org/10.1108/MBE-11-2020-0147. 
  21. Reiterer, H. and F. Geyer, "Mensch-computer-interaktion", In R. Kuhlen, W. Semar, D. Strauch, K. Laisiepen, E. Lutterbeck, K.-H. and Meyer-Uhlenried (Eds.), Grundlagen der praktischen Information und Dokumentation. Handbuch zur Einfuhrung in die Informationswissenschaft und -praxis, 6th Edition. Berlin: DE GRUYTER SAUR, 2013. 
  22. Seo, D., S. Gharibdoust, and T. Mandl, "Comparing factors affecting self-disclosure behavior between German and South Korean SNS users", Telematics and Informatics, Vol.75, 2022, Available at https://doi.org/10.1016/j.tele.2022.101904. 
  23. Seyedghorban, Z., H. Tahernejad, R. Meriton, and G. Graham, "Supply chain digitalization: past, present and future", Production Planning & Control, Vol.31, No.2-3, 2020, pp. 96-114.  https://doi.org/10.1080/09537287.2019.1631461
  24. Song, M., "A comparative study on over-the-tops, Netflix & Amazon prime video: Based on the success factors of innovation", The International Journal of Advanced Smart Convergence, Vol.10, No.1, 2021, pp. 62-74. DOI: http://dx.doi.org/10.7236/IJASC.2021.10.1.62. 
  25. Steck, H., L. Baltrunas, E. Elahi, D. Liang, Y. Raimond, and J. Basilico, "Deep learning for recommender systems: A Netflix case study", AI Magazine, Vol.42, No.3, 2021, pp. 7-18, Available at https://doi.org/10.1609/aimag.v42i3.1814. 
  26. Sundar, S. and B. Zhang, "Proactive vs. reactive personalization: Can customization of privacy enhance user experience?", International Journal of Human-Computer Studies, Vol 128, 2019, pp. 86-99, Available at https://doi.org/10.1016/j.ijhcs.2019.03.002. 
  27. Trenker, J., "Digital media report: Video-on-demand-market data analysis & forecast", 2022, Available at https://www.statista.com/study/38346/video-on-demand/. 
  28. Zekhnini, K., A. Cherrafi, I. Bouhaddou, Y. Benghabrit, and J.A. Garza-Reyes, "Supply chain management 4.0: A literature review and research framework", Benchmarking: An International Journal, Vol.28, No.2, 2020, pp. 465-501.  https://doi.org/10.1108/BIJ-04-2020-0156
  29. Zhang H., T. Nakamura, and K. Sakurai, "Security and trust issues on digital supply chain", 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2019, pp. 338-343, Available at https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00069.