• Title/Summary/Keyword: Series-Parallel

Search Result 968, Processing Time 0.028 seconds

Bending performance of laminated sandwich shells in hyperbolic paraboloidal form

  • Alankaya, Veysel;Erdonmez, Cengiz
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.337-346
    • /
    • 2017
  • Sandwich shells made of composite materials are the main focus on recent literature parallel to the requirements of industry. They are commonly chosen for the modern engineering applications which require moderate strength to weight ratio without dependence on conventional manufacturing techniques. The investigations on hyperbolic paraboloidal formed sandwich composite shells are limited in the literature contrary to shells that have a number of studies, consisting of doubly curved surfaces, arbitrary boundaries and laminations. Because of the lack of contributive data in the literature, the aim of this study is to present the effects of curvature on hyperbolic paraboloidal formed, layered sandwich composite surfaces that have arbitrary boundary conditions. Analytical solution methodology for the analyses of stresses and deformations is based on Third Order Shear Deformation Theory (TSDT). Double Fourier series, which are specialized for boundary discontinuity, are used to solve highly coupled linear partial differential equations. Numerical solutions showing the effects of shell geometry are presented to provide benchmark results.

A New Optimal Design Method of the Electronic Ballast for MHL with Stable Run-up Current (시동전류 제한을 통한 메탈헬라이드 램프용 안정기의 최적 설계)

  • Lim, Byoung-Loh;Jang, Mog-Soon;Lim, Ki-Seung;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.409-415
    • /
    • 2008
  • This paper proposed a new optimal design method of the electronic ballast with stable run-up current for Metal Halide lamp during the ignition condition. In order to avoid operation in the acoustic resonance frequency band and to supply the optimal ignition current without demage of inverter switching components during the ignition period, the values of the series inductor Ls, the series capacitor Cs, and the parallel capacitor Cp were determined by analysis of characteristics of inverter transfer function depend on Lamp operating power and resistance of ignition condition and steady state operating condition. For the prototype ballast for a 400W Metal Halide Lamp, experimental results are presented in order to validate the proposed method.

개선된 자속구속형 전류제한기의 동작 특성 분석

  • Kim, Yong-Jin;Du, Ho-Ik;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.215-215
    • /
    • 2009
  • Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through initial line current after fault initiation. through the analysis, it was shown that the smaller initial line current is superior to current limiting characteristics and a point of view of power burden of the YBCO coated conductor.

  • PDF

UPFC Modelling on RTDS (RTDS(Real Time Digital Simulator)를 이용한 UPFC(Unified Power Flow Controller) 모델링)

  • 김광수;이상중
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.47-50
    • /
    • 2001
  • In order for effective operation of existing power systems, introduction of the so-called FACTS(Flexible AC Transmission System) such as SVC and UPFC etc, is unavoidable. The UPFC(Unified Power Flow Controller) is composed of STATCOM(Static Compensator) and SSSC(Static Synchronous Series Compensator), and is used to control the magnitude and phase angle of injected sources which are connected bothin series and in parallel with the transmission line to control the power flow and bus voltages. This paper presents a UPFC simulation on RTDS. The voltage and phase angle of a system have been analyzed by regulating the firing angle inside the UPFC.

  • PDF

Interleaved Forward Converter for High Input Voltage Application with Common Active-Clamp Circuit

  • Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.400-402
    • /
    • 2008
  • A new interleaved forward converter, adopting series-input parallel-output structure with a common transformer reset circuit, is proposed in this paper. Series-input structure distributes the voltage stress on switches, which makes it suitable for high input voltage application. Paralleling output stage with an interleaving technique enables the circuit handle large output current and reduces filter size. In addition, since two forward converters share one active-clamp circuit for the transformer reset, its primary structure is simplified. All these features make the proposed converter promising for high input voltage applications with high efficiency and simple structure.

  • PDF

A Study on Improvement of Powerfactor and Source Waveform Converter System of Power Supply for HVDC Transmission (HVDC 송전을 위한 전원용 컨버터 시스템의 역률 및 파형개선에 관한 연구)

  • Hwang, Lak-Hoon;Lee, Chun-Sang;Lee, Sang-Yong;Na, Seng-Kwon;Cho, Moon-Taek
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.395-397
    • /
    • 1999
  • This paper presents a method of improving the power factor and the waveform of A.C line currents and the out waveforms of AC to DC fully bridge converter systems which is achieved by connecting converters in series and parallel. The results of simulation show that the power factor and the source voltage and current waveforms are improved by the method of connecting converter in series, and the controlled input voltage and current waveform using a current limit controller.

  • PDF

An Experimental Study on the Performance Improvement of Industrial Blower Silencer (산업용 송풍기 소음기의 성능개선을 위한 실험적 연구)

  • Kim, B.S.;Kim, Yong-woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1060-1069
    • /
    • 2005
  • Silencers are engineering devices that are designed to attenuate sound waves propagating in a flowing medium. The muffler type silencer has a series of chambers in parallel or series utilizing the reflection and expansion characteristics of the expansion chambers, sidetubes, branch resonators, and tailpipes to attenuate the sound. To Improve the performance of industrial blower silencer of muffler type which is employed in petrochemical plant, this paper seeks its optimal arrangement of buffs by experimental method and suggests optimal arrangement of buffs. Experimental results show that the optimal one suggested can reduce the noise level as much as 14 dB (or 18 dB(A)) in the laboratory and as much as 4 dB(A) compared to that of the existing silencer on the ground.

Power Bus Noise Analysis on IC using Wide-Band Ferrite Bead Model (광대역 페라이트 비드 모델을 이용한 IC 전원단의 잡음해석)

  • 이신영;손경주;최우신;이해영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1276-1282
    • /
    • 2003
  • The SMT(Surface Mount Type) ferrite bead used to reduce the influx of power bus noise is modeled with parallel capacitor(C), series resistor(R) and series inductor(L). The simple equivalent circuit modeling doesn't agree with the measurement result. In this paper, we proposed the accurate equivalent circuit model of the ferrite bead at wide frequency range(50 MHz∼3 GHz) and analyzed the noise effect to the high speed IC(Integrate Circuit) with ferrite bead or not.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

A Novel Active Boost Power Converter for single phase SRM (단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Heeㅋ;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF