• Title/Summary/Keyword: Series-Parallel

Search Result 968, Processing Time 0.039 seconds

Redox Characteristic and Evolution of a Fragipan of Gangreung Series Commonly Developed in Coastal Terraces (해성단구지에서 발달된 강릉통의 이쇄경반층(Btx) 토양의 산화.환원적 특성에 관한 연구)

  • Zhang, Yong-Seon;Moon, Yong-Hee;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Park, Chan-Won;Yoon, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.137-144
    • /
    • 2012
  • Soil pan typically presents the problems in soil water movement or in aeration which is not appropriate for a plant root growth, In this study physico-chemical characteristics of soils and micromorphological characteristic of clay accumulated zone were investigated to identify redox characteristic and evolution of a fragipan of Gangreung series commonly developed in coastal terraces. Gangreung series is classified as Aquic Fragiudalfs according to the USDA soil taxonomy. It is known that sedimentary ocean floor results in soil pan having parallel liner soil structure due to landscape evolution around 200 to 250 million years ago. it is considered that illite, kaolinite, and vermiculite are major clay minerals contained in a fragipan of Gangreung series. Mixed gray and reddish brown colored band around soil pores was found and would be the redoxmorphic features of fragipan. It is possibly due to accumulated illuvial clay and ferriargillans in soil pores and aggregates in reducing conditions eluding ferrous material. Therefore, mixed colored band around pores in soils of Gangreung series would be developed from the eluted ferrous materials which were accumulated in fragipan during the emerged land formation.

Corporate-Series Fed Microstrip Array Antenna with Yagi Elements for 5G

  • Kim, Geun-Sik;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.162-166
    • /
    • 2020
  • The present paper presents an array antenna of a microstrip patch for 5G applications. Four rectangular microstrip patch elements are arranged in parallel and series to form an array antenna. Two insets are made on both sides of each patch element to achieve a wide frequency bandwidth of 23.97-31.60 GHz. To attain a high gain and wider bandwidth, the microstrip patch antenna is fed using series and corporate feeding networks. Further, three director elements on top of the top-most patch elements, and one reflector element at the open end of each patch element, are added. The addition of the Yagi elements improved the overall gain and acquired a higher radiation efficiency throughout the operating frequency bandwidth, with the array antenna achieving a maximum peak gain of 8.7 dB. The proposed antenna is built on a low-loss and low-cost substrate of FR4-eproxy. The proposed antenna design with a simple structure is suitable for Internet of Things and 5G applications.

A Study on Control and Compensating Characteristics of Active Series Voltage Compensator with Harmonic Current Compensating Capability (고조파전류 보상 기능을 갖는 능동 직렬 전압보상기의 제어 및 보상특성에 관한 연구)

  • 이승요;김홍성;최규하;신우석;김홍근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.484-492
    • /
    • 2000
  • In this paper, a voltage compensator with harmonic current compensating capability is studied and its compensating characteristics are analyzed. Like the hybrid active power filter, the proposed system is composed of parallel LC passive filter and series PWM converter connected to power line through series transformer. It is shown that the compensation of harmonic current generated due to nonlinear loads such as diode rectifier and instantaneous voltage compensation of the source are performed through the proposed compensating system. The operating principle of the proposed system is described through a single-phase equivalent circuit and the control strategy is suggested on the d-q rotating reference frame of the 3-phase system. Also, experiment is carried out to verify compensating characteristics of the proposed system.

  • PDF

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.

Analysis of RF-DC Conversion Efficiency of Composite Multi-Antenna Rectifiers for Wireless Power Transfer

  • Deng, Chao;Huang, Kaibin;Wu, Yik-Chung;Xia, Minghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5116-5131
    • /
    • 2017
  • This paper studies the radio frequency to direct current (RF-DC) conversion efficiency of rectennas applicable to wireless power transfer systems, where multiple receive antennas are arranged in serial, parallel or cascaded form. To begin with, a 2.45 GHz dual-diode rectifier is designed and its equivalent linear model is applied to analyze its output voltage and current. Then, using Advanced Design System (ADS), it is shown that the rectifying efficiency is as large as 66.2% in case the input power is 15.4 dBm. On the other hand, to boost the DC output, three composite rectennas are designed by inter-connecting two dual-diode rectifiers in serial, parallel and cascade forms; and their output voltage and current are investigated using their respective equivalent linear models. Simulation and experimental results demonstrate that all composite rectennas have almost the same RF-DC conversion efficiency as the dual-diode rectifier, yet the output of voltage or current can be significantly increased; in particular, the cascade rectenna obtains the highest rectifying efficiency.

Kinimatic Analysis of a New Clss of 6-DOF Parallel Manipulator (새로운 6자유도 병렬 매니퓰레이터의 기구학 해석)

  • Byun, Yong-Kyu;Jo, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.414-430
    • /
    • 1996
  • In this paper, a new kinematic structure of a parallel manipulator with six Cartesian degrees of freedom is proposed. It consists of a platform which is connected to a fixed base by means of 3-PPSP(parameters P, S denote the prismatic, spherical joints) subchains. Each subchain has a link which is concected to a passive prismatic joint at the one end and a passive spherical joint at the other. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. This arrangement provides a basis to control all six Cartesian degrees of motion of the platform in space. Due to its efficient architecture, the colsed-form solutions of the inverse and forward kinematics can be obtained. As a consequence, this new kinematic structure can be servo controlled using simple inverse kinematics becaese forward kinematics allows for measuring the platform's position and orientation in Cartesian space. Furthermore, the proposed structure provides an effective functional workspace. Series of simulations are performed to verify the results of the kinematics analyses.

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

Variable Output and Parallel Operation Control of EV Charger (전기자동차용 충전기의 가변출력 및 병렬운전 제어)

  • Lee, Sang-Hyeok;Kang, Seong-Gu;Awasthi, Prakash;Hwang, Jung-Goo;Lee, Seung-Yul;Wi, Han-Byul;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • This research paper describes the development of battery charger with a variable output voltage capacity for charging the batteries used in electrical vehicles. The voltage and current accordingly is control via the buck converter that receives three phase current at primary side and fed to bridge rectifier which is comprised of full bridge converter and HFTR(High Frequency Transformer) for isolation and a square wave AC output. The transformer primary side is in series to divide certain charging current and the secondary side is comprised of six fix transformers so that they can generate certain amount of power and various output voltage through relay connection using 6 DC outputs. Moreover, all parallel connected full bridge serial resonant converter communicate together with upper(main) controller. The constructed structure is verified by conducting the test on PSIM as well as experimentally.

A PIN Diode Switch with High Isolation and High Switching Speed (높은 격리도와 고속 스위칭의 PIN 다이오드 스위치)

  • Ju Inkwon;Yom In-Bok;Park Jong-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.167-173
    • /
    • 2005
  • The isolation of the series PIN diode switch is restricted by the parallel capacitance of PIN diode and the switch driver circuit limits switching speed of PIN diode switch. To overcome these problems, a high isolation and high switching speed Pin diode switch is proposed adapting the parallel resonant inductance and TTL compatible switch driver circuit. The measurement results of the 3 GHz PM diode switch show 1 GHz frequency band, less than 1.5 dB insertion loss, 65 dB isolation, more than 15 dB return loss and less than 30 ns switching speed. In particular the 3 GHz PIN diode switch using the parallel resonant inductance exhibits the improvement of isolation by 15 dB.

Characteristics of 15 kVA superconducting fault current limiter (15 kVA급 저항형 초전도 한류기의 전류제한특성)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon;Lim, Hae-Ryong;Kim, In-Seon;Hyun, Ok-Bae
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.272-275
    • /
    • 2000
  • We investigated a resistive superconducting fault current limiter (SFCL) fabricated using YBCO thin films on 2-inch diameter sapphire substrates. Nearly identical SFCL units were prepared and tested. The units were connected in series and parallel to increase the current and voltage ratings. A serial connection of the units showed significantly unbalanced power dissipation between the units. This imbalance was removed by introducing a shunt resistor to the firstly quenched unit. Parallel connection of the units increased the current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current 25 Ap, was produced and successfully tested at a 220 V circuit. From the resistance increase, we estimated that the film temperature increases to 200 K in 5 msec, and 300 K in 120 msec. Successive quenches revealed that this system is stable without degradation in the current limiting capability under such thermal shocks as quenches at 220 V.

  • PDF