• 제목/요약/키워드: Series structure full-bridge converter

검색결과 11건 처리시간 0.026초

Simple High Efficiency Full-Bridge DC-DC Converter using a Series Resonant Capacitor

  • Jeong, Gang-Youl;Kwon, Su-Han;Park, Geun-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.100-108
    • /
    • 2016
  • This paper presents a simple high efficiency full-bridge DC-DC converter using a series resonant capacitor. The proposed converter achieves the zero voltage switching of the primary switches under a wide range of load conditions and reduces the high circulating current in the freewheeling mode using the leakage resonant inductance and the series resonant capacitor. Thus, the proposed converter overcomes the drawbacks of the conventional full-bridge DC-DC converter and improves its overall system efficiency. Its structure is simplified by using the leakage inductance of the transformer as the resonant inductance and omitting the DC output filter inductance. Also it can operate over a wide range of input voltages. In this paper, the operational principle, analysis and design example are described in detail. Finally, the experimental results from a 650W (24V/27A) prototype are demonstrated to confirm the operation, validity and features of the proposed converter.

블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터 (Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor)

  • 정강률
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

220V, 440V 3상 계통전압 혼용이 가능한 용접 전원장치용 위상천이 풀브리지 컨버터 (Phase-Shifted Full-Bridge Converter for Welding Power Supply Capable of Using 220 V, 440 V 3-Phase Grid Voltages)

  • 윤덕현;이우석;이준영;이일운
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.372-375
    • /
    • 2021
  • A three-leg inverter-type isolated DC-DC Converter that can use 220 and 440 V grid input voltages is introduced. The secondary circuit structure of the proposed topology is center-tap, which is the same as the conventional phase-shifted full-bridge converter. However, the primary circuit structure is composed of a three-leg inverter structure and a transformer, in which two primary windings are connected in series. The proposed circuit structure has a wider input voltage range than the conventional phase-shifted full-bridge converter, and the circulating-current on the primary-side is reduced. In addition, the voltage stress at the secondary rectifier is greatly improved, and high efficiency can be achieved at a high input voltage by removing the snubber circuit added to the conventional converter. Prototype converters with input DC of 311 V, output of 622 V, and 50 V and 6 kW class specifications were designed and manufactured to verify the validity of the proposed topology; the experimental results are presented.

전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구 (Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications)

  • 이일운
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.

정류용 브릿지 다이오드가 없는 고효율 하프 브릿지 AC-DC 컨버터 (A Bridgeless Half-Bridge AC-DC Converter with High-Efficiency)

  • 최우영;유주승;최제연
    • 전력전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.293-301
    • /
    • 2011
  • 본 논문에서는 정류용 브릿지 다이오드가 없는 고효율 하프 브릿지 AC-DC 컨버터를 제안한다. 제안하는 컨버터는 비대칭 펄스 폭 변조 방식의 하프 브릿지 DC-DC 컨버터와 정류용 브릿지 다이오드가 없는 역률 개선 회로가 통합된 회로 구조를 지닌다. 제안하는 컨버터는 정류용 브릿지 다이오드를 사용하지 않고 교류 입력 전압으로부터 절연된 직류 출력 전압을 공급한다. 간단한 회로 구조와 함께 도통 손실을 줄일 수 있다. 또한 스위칭 소자들의 영전압 스위칭을 통하여 스위칭 손실을 줄일 수 있다. 두 개의 직렬 연결된 트랜스포머를 구비함으로서 프로파일을 낮추고 전력밀도를 높일 수 있다. 250 W (48 V / 5.2 A) 회로 설계 및 실험을 통하여 제안된 컨버터의 성능을 $90 \;V_{rms}$ 교류 입력 전압에 대하여 입증하였다.

전기자동차용 충전기의 가변출력 및 병렬운전 제어 (Variable Output and Parallel Operation Control of EV Charger)

  • 이상혁;강성구;아와스티 프라카시;황정구;이승열;위한별;박성준
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.153-160
    • /
    • 2013
  • This research paper describes the development of battery charger with a variable output voltage capacity for charging the batteries used in electrical vehicles. The voltage and current accordingly is control via the buck converter that receives three phase current at primary side and fed to bridge rectifier which is comprised of full bridge converter and HFTR(High Frequency Transformer) for isolation and a square wave AC output. The transformer primary side is in series to divide certain charging current and the secondary side is comprised of six fix transformers so that they can generate certain amount of power and various output voltage through relay connection using 6 DC outputs. Moreover, all parallel connected full bridge serial resonant converter communicate together with upper(main) controller. The constructed structure is verified by conducting the test on PSIM as well as experimentally.

액티브 스너버를 이용한 고주파 용접기 컨버터 개발 (Development of Converter for High Frequency Welding Machines using Active Snubber)

  • 신준영;이재민;최승원;이준영
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.351-355
    • /
    • 2016
  • Welding machines are high-capacity systems used in a low-frequency range using IGBT. As their system is similar to a large transformer, most welding machines suffer a great loss because of hard switching and vast leakage inductance. A voltage-balancing circuit is designed to overcome these shortcomings. This circuit can reduce the transformer size by making it into a high frequency and reducing the input voltage by half and by adopting a serial structure that connects two full-bridges in a series to use a MOSFET with a good property at high frequency. In addition, a Schottky diode is used in the primary rectifier to overcome the low efficiency of most welding machines. To use the Schottky diode with a reliably relatively low withstanding voltage, an active snubber is adopted to effectively limit the ringing voltage of the diode cut-off voltage.

Design Considerations of Asymmetric Half-Bridge for Capacitive Wireless Power Transmission

  • Truong, Chanh Tin;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.139-141
    • /
    • 2019
  • Capacitive power transfer has an advantage in the simplicity of the energy link structure. So, the conventional phase -shift full bridge sometime is not always the best choice because of its complexity and high cost. On the other hand, the link capacitance is usually very low and requires high-frequency operation, but, the series resonant converter loses zero-voltage switching feature in the light load condition, which makes the switching loss high especially in CPT system. The paper proposes a new low-cost topology based on asymmetric half-bridge to achieve simplicity as well as wide zero voltage switching range. The design procedure is presented, and circuit operations are analyzed and verified by simulation.

  • PDF

Si MOSFET과 GaN FET Power System 성능 비교 평가 (Comparative Performance Evaluation of Si MOSFET and GaN FET Power System)

  • 안정훈;이병국;김종수
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.283-289
    • /
    • 2014
  • This paper carries out a series of analysis of power system using Gallium Nitride (GaN) FET which has wide band gap (WBG) characteristics comparing to conventional Si MOSFET-used power system. At first, for comparison of each semiconductor device, the switching-transient parameter is quantitatively extracted from released information of GaN FET. And GaN FET model which reflect this dynamic property is configured. By using this model, the performance of GaN FET is analyzed comparing to Si MOSFET. Also, in order to enable a representative assessment on the power system level, Si MOSFET and GaN FET are applied to the most common structure of power system, full-bridge, and each power systems are compared based on various criteria, such as performance, efficiency and power density. The entire process is verified with the aid of mathematical analysis and simulation.

릴레이를 이용한 차량용 배터리의 가변 충전기 (Variable Charger of Vehicle using Relay)

  • 송성근;정승태;강성구;이상훈
    • 조명전기설비학회논문지
    • /
    • 제26권9호
    • /
    • pp.47-56
    • /
    • 2012
  • This research is to develop satiable battery charger with a variety of capacity and voltage specifications of battery. For this, voltage or current were controlled through buck converter which is DC voltage that already received three-phase at primary side and passed bridge rectifier diode. And, it was comprised of full-bridge converter and HFTR for insulation and a square wave AC. The transformer primary side was comprised in series to divide certain charging current and the secondly side was comprised of 6 fixed transformers so that they can generate certain amount of power and various output voltage through relay parallel compound 6 DC Link outputs. To confirm such structure's verification and validity, simulation with PSIM was conducted, and validity of proposed variable charger system was verified through 3kW stack production.