• 제목/요약/키워드: Series hybrid electric vehicle(SHEV )

검색결과 7건 처리시간 0.023초

Simulator for Monitoring the Operations of Range Extender Electric Vehicles

  • Chun, Tae-Won;Tran, Quang-Vinh;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.424-429
    • /
    • 2011
  • In this paper, the simulator of an on-line monitoring system for the range extender electric vehicle has been developed. The messages from the four control modules, the air pressure and fuel level sensors data, and the on/off switching states of 31 indicator lamps can be received through the control area network (CAN), and displayed on the graphic panel. The simulator was designed using the four DSP boards, variable resistors, and toggle switches instead of the four control modules, sensors, and switching state of indicator lamps on an actual series hybrid electric vehicle (SHEV) bus, respectively. The performance of the monitoring technologies was verified with the simulator at the laboratory, and then it was tested on an actual SHEV bus. The simulator is very useful at the initial development of the monitoring system at the hybrid-type or electrical vehicles.

직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘 (A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

디젤 하이브리드 전기 자동차의 연료경제성 및 배출가스에 관한 시뮬레이션 (Simulation for the Fuel Economy and the Emission of Diesel Hybrid Electric Vehicle)

  • 한성빈;장용훈;서범주;정연종
    • 에너지공학
    • /
    • 제18권1호
    • /
    • pp.31-36
    • /
    • 2009
  • 환경친화적인 자동차 제조 방법에는 몇 가지 방법이 있다. 하이브리드 전기자동차는 가장 현실적인 방법일 것이다. 하이브리드 전기자동차는 내연기관과 전기장치의 두 가지 동력을 사용한다. 하이브리드 전기자동차는 연료소비와 배기가스 저감을 위해서 개발되었다. 저자들은 하이브리 전기자동차의 주요 동력원으로 디젤 기관을 선택했다. 테스트는 도심버스주행모드와 고속도로주행모드가 사용되었다. 본 연구는 직렬하이브리드 전기자동차, 병렬하이브리드 전기자동차, 플러그인 직렬 전기자동차와 플러그인 병렬 전기자동차에 따른 중형디젤 하이브리드 자동차의 연료경제성과 배기가스의 시뮬레이션의 결과를 제시하고 있다.

Practical Methodology of the Integrated Design and Power Control Unit for SHEV with Multiple Power Sources

  • Lee, Seongjun;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.353-360
    • /
    • 2016
  • Series hybrid electric vehicles (SHEVs) having multiple power sources such as an engine- generator (EnGen), a battery, and an ultra-capacitor require a power control unit with high power density and reliable control operation. However, manufacturing using separate individual power converters has the disadvantage of low power density and requires a large number of power and signal cable wires. It is also difficult to implement the optimal power distribution and fault management algorithm because of the communication delay between the units. In order to address these concerns, this approach presents a design methodology and a power control algorithm of an integrated power converter for the SHEVs powered by multiple power sources. In this work, the design methodology of the integrated power control unit (IPCU) is firstly elaborately described, and then efficient and reliable power distribution algorithms are proposed. The design works are verified with product-level and vehicle-level performance experiments on a 10-ton SHEV.

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

군용 직렬형 하이브리드 전기 차량을 위한 회생제동 협조제어 시스템의 압력제어 영향에 관한 연구 (A Study on the Effect of the Pressure Control of Cooperative Control System with Regenerative Brake for a Military SHEV)

  • 정순규;최현석
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.517-525
    • /
    • 2016
  • In this research, the effect of the pressure control of cooperative control system with regenerative brake for a military series hybrid-electric vehicle was studied. A cooperative control system with regenerative brake was developed to maximize regenerative energy from electric traction motors of the vehicle. However, the pressure control method of the system was modified to solve a time delay problem and it deteriorates the performance of the system. A Simulink model including the hybrid-electric components, the cooperative control system with regenerative brake, and the vehicle dynamics was developed and used to find a solution. The regenerative energy ratio with respect to the whole brake energy was increased in this research from less than 60 % to over 80 %.

Design to Reduce Cost and Improve the Mechanical Durability of IPMSM in Traction Motors

  • Lee, Ki-Doek;Lee, Ju
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.106-114
    • /
    • 2014
  • The interior permanent-magnet synchronous motor (IPMSM) is often used for the traction motor of hybrid electric vehicles (HEVs) and electric vehicles (EVs) due to its high power density and wide speed range. This paper introduces the 120kW class IPMSM for traction motors in military trucks. This system, as a SHEV (series hybrid electric vehicle), requires a traction motor that can generate high torque. This study introduces a way to reduce costs by proposing a design approach that creates reluctance torque that can be maximized by varying the dq-axis inductance. If a model designed by a design approach meets the desired torque, the magnetic torque can be reduced by an amount equal to the increase in reluctance torque and consequently the amount of permanent magnets can be reduced. A reduction gear and high speed operation of motors are necessary for the miniaturization of the motor. Thus, a fairly large centrifugal force is generated due to the high speed rotation. This force causes mechanical interference between the rotor and the stator, and a design approach for adding an iron bridge is explained to solve the interference. In this study, the initial model and the improved model that reduces cost and improves mechanical durability are compared by FEA, and the models are produced. Finally, the FEM results were verified experimentally.