• Title/Summary/Keyword: Serial-to-Parallel Data Converter

Search Result 18, Processing Time 0.031 seconds

Design of Low-power Serial-to-Parallel and Parallel-to-Serial Converter using Current-cut method (전류 컷 기법을 적용한 저전력형 직병렬/병직렬 변환기 설계)

  • Park, Yong-Woon;Hwang, Sung-Ho;Cha, Jae-Sang;Yang, Chung-Mo;Kim, Sung-Kweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.776-783
    • /
    • 2009
  • Current-cut circuit is an effective method to obtain low power consumption in wireless communication systems as high speed OFDM. For the operation of current-mode FFT LSI with analog signal processing essentially requires current-mode serial-to-parallel/parallel-to-serial converter with multi input and output structure. However, the Hold-mode operation of current-mode serial-to-parallel/parallel-to-serial converter has unnecessary power consumption. We propose a novel current-mode serial-to-parallel/parallel-to-serial converter with current-cut circuit and full chip simulation results agree with experimental data of low power consumption. The proposed current-mode serial-to-parallel/parallel-to-serial converter promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

Implementation of All-Optical Serial-Parallel Data Converters Using Mach-Zehnder Interferometers and Applications (MZI를 이용한 전광 직렬-병렬 데이터 형식 변환기 구현과 활용 방안)

  • Lee, Sung Chul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • All-optical signal processing is expected to offer advantages in speed and power consumption against over electronics signal processing. It has a potential to solve the bottleneck issues of ultra-high speed communication network nodes. All-optical serial-to-parallel and parallel-to-serial data converters would make it possible to easily process the serial data information of a high-speed optical packet without optical-to-electronic-to-optical data conversion. In this paper, we explain the principle of simple and easily expandable all-optical serial-to-parallel and parallel-to-serial data converters based on Mach-Zehnder interferometers. We experimentally demonstrate these data converters at 10Gbit/s serial data rate. They are useful all-optical devices for the all-optical implementations of label decoding, self-routing, control of variable packets, bit-wise logical operation, and data format conversion.

Design of a Serial-to-Parallel Converter Using GaAs pHEMT (GaAs pHEMT를 이용한 직-병렬변환기 설계)

  • Lee, Chang-Dae;Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.171-183
    • /
    • 2018
  • Herein, we show the design and fabrication of a serial-to-parallel converter (SPC) using the $0.25-{\mu}m$ GaAs pHEMT process. The serial-to-parallel converter is composed of four bits to control the four phase shifters used in the core chip. The SPC stores the received serial data signal to a register in the SPC and converts the stored data into the parallel data. Each converted output data can control four phase shifters. The size of the fabricated SPC is $1,200{\times}480{\mu}m^2$ and it uses two DC power supplies of 5 V and -3 V. The consumption current of each DC power supply is 7.1 mA for 5 V, and 2.1 mA for -3 V.

Redundant Operation of a Parallel AC to DC Converter via a Serial Communication Bus

  • Kanthaphayao, Yutthana;Kamnarn, Uthen;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • The redundant operation of a parallel AC to DC converter via a serial communication bus is presented. The proposed system consists of three isolated CUK power factor correction modules. The controller for each converter is a dsPIC30F6010 microcontroller while a RS485 communication bus and the clock signal are used for synchronizing the data communication. The control strategy of the redundant operation relies on the communication of information among each of the modules, which communicate via a RS485 serial bus. This information is received from the communication checks of the converter module connected to the system to share the load current. Performance evaluations were conducted through experimentation on a three-module parallel-connected prototype, with a 578W load and a -48V dc output voltage. The proposed system has achieved the following: the current sharing is quite good, both the transient response and the steady state. The converter modules can perform the current sharing immediately, when a fault is found in another converter module. In addition, the transient response occurs in the system, and the output voltages are at their minimum overshoot and undershoot. Finally, the proposed system has a relatively simple implementation for the redundant operation.

Current-Mode Serial-to-Parallel and Parallel-to-Serial Converter for Current-Mode OFDM FFT LSI (전류모드 OFDM FFT LSI를 위한 전류모드 직병렬/병직렬 변환기)

  • Park, Yong-Woon;Min, Jun-Gi;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • OFDM is used for achieving a high-speed data transmission in mobile wireless communication systems. Conventionally, fast Fourier transform that is the main signal processing of OFDM is implemented using digital signal processing. The DSP FFT LSI requires large power consumption. Current-mode FFT LSI with analog signal processing is one of the best solutions for high speed and low power consumption. However, for the operation of current-mode FFT LSI that has the structure of parallel-input and parallel-output, current-mode serial-to-parallel and parallel-to-serial converter are indispensable. We propose a novel current-mode SPC and PSC and full chip simulation results agree with experimental data. The proposed current-mode SPC and PSC promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

  • PDF

Design of QPSK Demodulator Using CMOS BPSK Receiver and Reflection-Type Phase Shifter (CMOS 기반 BPSK 수신기와 반사형 위상 천이기를 이용한 QPSK 복조기 설계)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.770-776
    • /
    • 2009
  • We propose and demonstrate an I/Q demodulator using four-port BPSK demodulator base on additive mixing and reflection-type phase shifter using hybrid technique. Previously, the conventional I/Q demodulator base on multiplicative or additive mixing method divides I/Q signal path from mixer to parallel-to-serial converter. In this paper, we propose new I/Q demodulator without dividing I/Q baseband signal path. The proposed schematic requires half size in implementation and half power consumption in baseband path compared with the conventional receiver. Also, the proposed receiver eliminates parallel-to-serial converter after data decoding. The proposed circuit has been successfully demodulated a QPSK signal with the L-band carrier frequency and 20 Mbps data rate.

A low-power 10 Gbps CMOS parallel-to-serial converter (저전력 10 Gbps CMOS 병렬-직렬 변환기)

  • Shim, Jae-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.469-474
    • /
    • 2010
  • This paper presents a 10Gbps CMOS parallel-to-serial converter for transmission of sensor data. A low-noise clock multiplying unit(CMU) and a multiplexer with controllable data sequence are proposed. The transmitter was fabricated in 0.13 um CMOS process and the measured total output jitter was less than 0.1 UIpp(unit-interval, peak-to-peak) over 20 kHz to 80 MHz bandwidth. The jitter of the CMU output only was measured as 0.2 ps,rms. The transmitter dissipates less than 200 mW from 1.5 V/2.5 V power supplies.

Design of a High Speed and Low Power CMOS Demultiplexer Using Redundant Multi-Valued Logic (Redundant Multi-Valued Logic을 이용한 고속 및 저전력 CMOS Demultiplexer 설계)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper proposes a high speed interface using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that convert redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, a 1:4 demultiplexer (DEMUX, serial-parallel converter) IC was designed using a 0.35${\mu}m$ standard CMOS Process. Proposed demultiplexer is achieved an operating speed of 3Gb/s with a supply voltage of 3.3V and with power consumption of 48mW. Designed circuit is limited by maximum operating frequency of process. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 3Gb/s in submicron process of high of operating frequency.

  • PDF

Implementation of CMOS 4.5 Gb/s interface circuit for High Speed Communication (고속 통신용 CMOS 4.5 Gb/s 인터페이스 회로 구현)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.128-133
    • /
    • 2006
  • This paper describes a high speed interface circuit using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that converts redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, the proposed 1:4 DEMUX (demultiplexer, serial-parallel converter), was designed using a 0.35um standard CMOS technology. Proposed DEMUX is achieved an operating speed of 4.5Gb/s with a supply voltage of 3.3V and with power consumption of 53mW. The operating speed of this circuit is limited by the maximum frequency which the 0.35um process has. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 10Gb/s in submicron process of high operating frequency.

  • PDF

A Hardware Architecture for Retaining the Connectivity in Gray-Scale Image (그레이 레벨 연결성 복원 하드웨어 구조)

  • 김성훈;양영일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.23-28
    • /
    • 2002
  • In this paper, we have proposed the hardware architecture which implements the algorithm for retaining the connectivity which prevents the disconnection in the gray-scale image thinning. To extract the skeleton from the image in a real time, it is necessary to examine the connectivity of the skeleton in a real time. The proposed architecture finds the connectivity number in the 4-clock period. The architecture consists of three blocks, PS(Parallel to Serial) Converter and Stare Generator and Ridge Checker. The PS Converter changes the 3$\times$3 gray level image to four sets of image pixels. The State Generator examines the connectivity of the central pixel by searching the data from the PS Converter. The Ridge Checker determines whether the central pixel is on the skeleton or not. The proposed architecture finds the connectivity of the central pixel in a 3$\times$3 gray level image in the 4-clocks. The total circuits are verified by the design tools and operate correctly.

  • PDF