• Title/Summary/Keyword: Serial peripheral interface

Search Result 33, Processing Time 0.027 seconds

A C-Band CMOS Bi-Directional T/R Chipset for Phased Array Antenna (위상 배열 안테나를 위한 C-대역 CMOS 양방향 T/R 칩셋)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.571-575
    • /
    • 2017
  • This paper presents a C-band bi-directional T/R chipset in $0.13{\mu}m$ TSMC CMOS technology for phased array antenna. The T/R chipset, which is a key component of phased array antenna, consists of a 6 bit phase shifter, a 6 bit step attenuator, and three bi-directional gain amplifiers. The phase shifter is controlled up to $354^{\circ}$ with $5.625^{\circ}$ phase step for precise beam steering. The step attenuator is also controlled up to 31.5 dB with 0.5 dB attenuation step for the side lobe level rejection. The LDO(Low Drop Output) regulator for stable 1.2 V DC power and the SPI(Serial Peripheral Interface) for digital control are integrated in the chipset. The chip size is $2.5{\times}1.5mm^2$ including pads.

Development of a Wind Turbine Monitoring System based on LAN by using LabVIEW (LabView를 이용한 LAN 환경에서의 풍력발전 원격감시 제어시스템 구현)

  • Hong, Moo-Kyoung;Jo, In-cheol;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.292-294
    • /
    • 2008
  • 최근 환경 파괴와 에너지 고갈에 대한 문제들이 사회의 큰 문제로 대두 되면서 풍력발전의 중요성이 증가하고 있다. 본 논문에서는 LabVIEW를 이용하여 이더넷(Ethernet) 환경에서의 풍력발전 원격감시 제어시스템을 구현하였다. 제안된 원격감시 제어시스템은 풍력발전 시스템의 MCU와 W5100의 SPI(Serial Peripheral Interface)를 통한 이더넷 통신용 하드웨어를 구축하였으며, NI사의 LabVIEW를 이용하여 서버상의 HMI(Human Machine Interface) 소프트웨어를 구현하였다. 본 연구의 실험을 위해 영구자석형 동기 발전기(PMSG:Permanent Magnet Synchronous Generator)를 이용하여 풍력발전 시스템 모델을 구현하고 이를 이용하여 원격감시 제어시스템의 성능을 검증하였다.

  • PDF

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.

The design of communication protocol for controlling efficiently modular medical instruments (모듈화된 의료장비들의 효율적 제어를 위한 통신 프로토콜 설계)

  • 신창민;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.284-287
    • /
    • 2000
  • Recently, developing medical devices have a tendency becoming the module for satisfying user's mutual complex needs. Because the most effective method for the observation of patients condition a diagnosis and a treatment is collecting data from various devices and controling operation following it. Module tendency is more popular due to manage easily totally many individual systems. This study implemented communication protocol to control by one control system connecting modular medical devices. Implemented system consist of one master module controlling all module and managing communication and many Slave modules. Communication between each modules introduced SPI(Serial Peripheral Interface) among many synchronous serial communication methods for the exact transmission and receipt of data. All communication executes by packet format. This can detect error. And, this protocol introduced PNP(Plug And Play) function that auto-detect connecting or removing module during running. This protocol exactly transmitted and received in faster speed more than 1Mbps. And in practical application to the ventilator this confirmed to give and take real-time data. And various functions by th central control system is implemented in this protocol.

  • PDF

Design of an SPI Interface for multimedia cards in ARM Embedded Systems (ARM 내장 임베디드 시스템용 멀티미디어카드를 위한 SPI 인터페이스 설계)

  • Moon, San-Gook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.273-278
    • /
    • 2012
  • In this contribution, we design and implement an SPI hardware interface for the microprocessor to communicate with the MMC (Multi-Media Card) in an embedded system. Proposed architecture is compatible with the APB in AMBA bus architecture. Embedding OS in an embedded system means a big burden in terms of hardware and software ending up with performance decline. In this paper, we adopt the concept of SPI communication without using OS in the embedded system and implement in a form of FPGA chip. The designed SPI module was automatically synthesized, placed, and routed. Implementation was performed through the Altera FPGA and well operated at 25MHz clock frequency, which satisfied our target speed.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

The USB Multi-signal Transmission System (USB 다중 신호 전송 시스템)

  • Chae, Jung-Sik;Kim, A-Yong;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1330-1335
    • /
    • 2013
  • In recent years, the need to simultaneously transmit a variety of signals, such as DVI(Digital Visual Interface), audio, video, USB(Universal Serial Bus), LAN from the computer is required. So the cable complexity and scalability issues have been raised. In this paper, this signal can be distributed using a single USB cable, computer, video, audio, USB, LAN, one USB multi-signal transmission system was designed and implemented. USB multi-signal transmission was implemented in order to convert a single DVI, audio, and multiple USB, LAN, USB signal converter modules. This USB DVI port supports up to 1920 * 1080 resolution. USB multi-signal transmission system by sending multiple signals into a single cable installation costs of the various cable and using the replication feature of the screen, will provide schools and institutes, etc., providing the convenience of the river, and the scalability of computer peripheral ports.

MHP: Master-Handoff Protocol for Fast and Energy-Efficient Data Transfer over SPI in Wireless Sensing Systems

  • Yoo, Seung-Mok;Chou, Pai H.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.553-563
    • /
    • 2012
  • Serial peripheral interface (SPI) has been identified as a bottleneck in many wireless sensing systems today. SPI is used almost universally as the physical connection between the microcontroller unit (MCU) and radios, storage devices, and many types of sensors. Virtually all wireless sensor nodes today perform up to twice as many bus transactions as necessary to transfer a given piece of data, as an MCU must serve as the bus master in all transactions. To eliminate this bottleneck, we propose the master-handoff protocol. After the MCU initiates reading from the source slave device and writing to the sink slave device, the MCU as a master becomes a slave, and either the source or the sink slave becomes the temporary master. Experiment results show that this master-handoff technique not only cuts the data transfer time in half, but, more importantly, also enables a superlinear energy reduction.

The Power Module DC Measurement Method of Modular Multilevel Converter System using SPI Communication (SPI 통신을 이용한 MMC 시스템의 Power Module DC 센싱 방법)

  • Lee, Jong-Hak;Shin, Yesl;Kim, Jun-Gu;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.53-54
    • /
    • 2014
  • MMC(Modular Multilevel Converter)는 여러 개의 Power Module을 직렬로 연결하여 정현파에 가까운 고전압의 파형을 얻을 수 있는 토폴로지로 대용량 전력변환 분야의 요구를 만족하면서 전력 품질을 향상시킬 수 있어 근래에 상당히 주목받고 있다. 당사에서는 5Mvar급 STATCOM(STATic synchronization COMpensator)을 MMC 형태로 제작하였다. 1개의 Cell 제어기는 6대의 Power Module의 제어와 보호를 담당하여 DC 전압을 센싱하여야 한다. 본 논문에서는 제안한 SPI(Serial Peripheral Interface) 통신을 이용하여 Power Module을 제어하기 위해 DC 센싱 방법에 대해 설명한다.

  • PDF

LCD Module Initialization and Panel Display for the Virtual Screen of LN2440SBC Embedded Systems (LN2440SBC 임베디드 시스템의 가상 스크린을 위한 LCD 모듈 초기화 및 패널 디스플레이)

  • Oh, Sam-Kweon;Park, Geun-Duk;Kim, Byoung-Kuk
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.452-458
    • /
    • 2010
  • In case of an embedded system with computing resource restrictions such as system power and cpu, the overhead due to displaying data on the computer screen may have a significant influence on the system performance. This paper describes an initialization method for LCD-driving components such as an ARM Core, an LCD controller, and an SPI(serial peripheral interface). It also introduces a pixel display function and a panel display method using virtual screen for reducing the display overhead for an LN2440SBC system with an ARM9-based S3C2440A microprocessor. A virtual screen is a large space of computer memories allocated much larger than those needed for one-time display of an image. Displaying a specific region of a virtual screen is done by assigning it as a view-port region. Such a display is useful in an embedded system when concurrently running tasks produce and display their respective results on the screen; it is especially so when the execution result of each task is partially modified, instead of being totally modified, on its turn and displayed. If the tasks running on such a system divide and make efficient use of the region of the virtual screen, the display overhead can be minimized. For the performance comparison with and without using the virtual screen, two different images are displayed in turn and the amount of time consumed for their display is measured. The result shows that the display time of the former is about 5 times faster than that of the latter.