• 제목/요약/키워드: Serendipity element

검색결과 27건 처리시간 0.018초

Serendipity 요소법에 의한 전기비저항 3차원 모델링 (Three-Dimensional Resistivity Modeling by Serendipity Element)

  • 이근수;조인기;강혜진
    • 지구물리와물리탐사
    • /
    • 제15권1호
    • /
    • pp.33-38
    • /
    • 2012
  • 전기비저항 탐사는 자동측정과 정밀한 자료 획득이 가능해 지면서 토목 및 환경문제 등 다양한 분야에 적용되고 있다. 이에 따라 시간에 따른 지하의 변화를 정밀하게 파악할 수 있는 전기비저항 모니터링 기법이 도입되면서 시간경과 모니터링 자료의 보다 정확한 모델링 기법과 역산 기법의 개발이 요구된다. 여기서는 3차원 전기비저항 모델링으로 요소의 변형을 통해 임의 형상의 이상체 및 복잡한 지형의 굴곡을 표현하기 쉬운 유한요소법을 사용하였다. 유한요소법에서 선형요소(1차 요소)는 시스템 방정식의 구성이 간단하고 대역폭이 좁다는 장점이 있다. 하지만 선형요소는 요소 또는 절점의 수에 따라 해의 수렴속도가 느리며 또한 정확성에 한계가 있다. 일반적으로 유한요소법에서 해의 정확성을 높이기 위해 고차요소를 사용한다. 본 논문에서는 고차의 Serendipity 요소를 사용하는 3차원 전기비저항 모델링 프로그램을 개발하였다. 선형요소법과 Serendipity 요소법의 비교를 위해 직육면체의 이상체 모델에 적용하였을 때, 선형요소법의 결과에 비해 Serendipity 요소를 사용하는 3차원 전기비저항 모델링의 결과에서 보다 정확하게 나타나는 것을 확인하였다.

Correction of node mapping distortions using universal serendipity elements in dynamical problems

  • Kucukarslan, Semih;Demir, Ali
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.245-256
    • /
    • 2011
  • In this paper, the use of universal serendipity elements (USE) to eliminate node mapping distortions for dynamic problem is presented. Rectangular shaped elements for USE are being introduced by using a flexible master element with an adjustable edge node location. The shape functions of the universal serendipity formulation are used to derive the mass and damping matrices for the dynamic analyses. These matrices eliminate the node mapping distortion errors that occurs incase of the standard shape function formulations. The verification of new formulation will be tested and the errors encountered in the standard formulation will be studied for a dynamically loaded deep cantilever.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.

3차원 정렬 유한요소 생성 코드 개발에 대한 연구 (A Study on the Development of a Three Dimensional Structured Finite Elements Generation Code)

  • 김진환
    • 한국해양공학회지
    • /
    • 제13권1호통권31호
    • /
    • pp.11-17
    • /
    • 1999
  • A three dimensional finite element generation code has been developed attaching simple blocks. Block can be either a quadrature or a cube depending on the dimension of a subject considered. Finite element serendipity basis functions are employed to map elements between the computational domain and the physical domain. Elements can be generated with wser defined progressive ratio for each block. For blocks to be connected properly, a block should have a consistent numbering scheme for vertices, side nodes, edges and surfaces. In addition the edge information such as the number of elements and the progressive ratio for each direction should also be checked for interfaces to have unique node numbers. Having done so, user can add blocks with little worry about the orientation of blocks, Since the present the present code has been written by a Visual Basic language, it can be developed easily for a user interactive manner under a Windows environment.

  • PDF

이차원 비압축성 유동 계산을 위한 Hermite 겹 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.13-23
    • /
    • 2008
  • This paper is an extension of previous study[1] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite (serendipity) cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires four degrees-of-freedom at each element corners. Those degrees-of-freedom are the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational basis functions from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[2].

이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.;Jumaat, Mohd. Zamin
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.625-642
    • /
    • 2010
  • The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

Platform Thinking within the Third Generation Science Park Concept: Emerging Cases from Finland and the Netherlands

  • Kakko, Ilkka;Mikkela, Kari
    • World Technopolis Review
    • /
    • 제5권1호
    • /
    • pp.30-46
    • /
    • 2016
  • This paper is intended as an opening of a dialog on how to apply platform thinking in the development of innovation environments. It will briefly describe a new STP (Science and Technology Park) concept called 3GSP (Third Generation Science Park), which is gaining momentum in Finland. The paper explains the fundamental changes that are currently taking place in the global innovation environment and explains why platform thinking is becoming an essential element in ecosystem development. The theoretical background and classifications of platforms are described and the benefits to be gained from STP perspective are highlighted. The paper emphasizes especially the role of so called 'competence platforms' and explains the main characteristics of a fully working competence platform. The role of competence platforms in understanding serendipity and as a fundamental factor in building the team is also highlighted. The paper analyses from STP perspective several practical examples, where platform thinking supports the emergence of new innovation environments, including Urban Mill (Finland) and Meetberlage (Netherlands). The requirements for comprehensive competence platform services are presented and their potential to support community building and therefore ecosystem development is illustrated. This analysis will provide STP practitioners with new models for applying platform thinking and will help to establish co-creation, open innovation and serendipity management practices. The case studies presented will help STP management teams to evaluate the benefits of competence platforms in different contexts.