Browse > Article
http://dx.doi.org/10.12989/sem.2010.36.5.625

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method  

Dhananjaya, H.R. (Department of Civil Engineering, Faculty of Engineering, University of Malaya)
Nagabhushanam, J. (Department of Aerospace Engineering, Indian Institute of Science Bangalore)
Pandey, P.C. (Department of Civil Engineering, Indian Institute of Science Bangalore)
Jumaat, Mohd. Zamin (Department of Civil Engineering, Faculty of Engineering, University of Malaya)
Publication Information
Structural Engineering and Mechanics / v.36, no.5, 2010 , pp. 625-642 More about this Journal
Abstract
The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.
Keywords
displacement fields; stress-resultant fields; Mindlin-Reissner plate theory; Integrated Force Method;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996b), "Three dimensional structural analysis by Integrated Force Method", Comput. Struct., 58(5), 869-886.   DOI   ScienceOn
2 Chen, W. and Cheung, Y.K. (1987), "A new approach for the hybrid element method", Int. J. Numer. Meth. Eng., 24, 1697-1709.   DOI   ScienceOn
3 Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002), "Direct modification for nonconforming elements with drilling DOF", Int. J. Numer. Meth. Eng., 55(12), 1463-1476.   DOI   ScienceOn
4 Dar lmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215.   DOI
5 Kanber, B. and Bozkurt, Y. (2006), "Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements", Acta Mech. Sinica, 22, 355-365.   DOI   ScienceOn
6 Kim, S.H. and Choi, C.K. (2005), "Modelling of Plates and Shells: Improvement of quadratic finite element for Mindlin plate bending", Int. J. Numer. Meth. Eng., 34(1), 197-208.
7 Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), "Non-linear structural analysis using integrated force method", Sadhana J., 25(4), 353-365.   DOI   ScienceOn
8 Lee, S.W. and Wong, S.C. (1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Meth. Eng., 18, 1297-1311.   DOI
9 Darilmaz, K. and Kumbasar, N. (2006), "An 8-node assumed stress hybrid element for analysis of shells", Comput. Struct., 84, 1990-2000.   DOI   ScienceOn
10 Dhananjaya, H.R., Nagabhushanam, J. and Pandey, P.C. (2007), "Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech., 26(1), 43-68.   DOI
11 Dhananjaya, H.R., Pandey, P.C. and Nagabhushanam, J. (2009), "New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method". Struct. Eng. Mech., 33(4), 485-502.   DOI
12 Dimitris, K., Hung, L.T. and Atluri, S.N. (1984), "Mixed finite element models for plate bending analysis, A new element and its applications", Comput. Struct., 19(4), 565-581.   DOI   ScienceOn
13 Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996a), "Development of finite elements for two-dimensional structural analysis using Integrated Force Method", Comput. Struct., 59(4), 691-706.   DOI   ScienceOn
14 Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, McGraw Hill, New York.
15 Razzaque, A. (1973), "Program for tringular plate bending element with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345.   DOI   ScienceOn
16 Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon press, Oxford.
17 Reissner, E. (1945), "The effect of transverse shear deformation on bending of plates", J. Appl. Mech., 12, A69-A77.
18 Robinson, J. (1973), Integrated Theory of Finite Elements Methods, Wiley, New York.
19 Liu, J., Riggs, H.R. and Tessler, A. (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints", Int. J. Numer. Meth. Eng., 49, 1065-1086.   DOI   ScienceOn
20 Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the Integrated Force Method", AIAA J., 28, 1838-1842.   DOI
21 Nagabhushanam, J. and Srinivas, J. (1991), "Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method", Proceedings of the Computer Mechanics '91, International conference on Computing in Engineering Sceince, Patras, Greece.
22 NISA Software and Manual (Version 9.3)
23 Ozgan, K. and Daloglu, A.T. (2007), "Alternate plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86.   DOI
24 Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 41, 237-251.
25 Patnaik, S.N. (1986), "The variational energy formulation for the Integrated Force Method", AIAA J., 24, 129-137.   DOI   ScienceOn
26 Patnaik, S.N. and Yadagiri, S. (1976), "Frequency analysis of structures by Integrated Force Method", Comput. Meth. Appl. Mech. Eng., 9, 245-265.   DOI   ScienceOn
27 Tong, P. (1970), "New displacement hybrid finite element models for solid continua", Int. J. Numer. Meth. Eng., 2, 73-83.   DOI
28 Spilker, R.L. (1980), "A serendipity cubic-displacement hybrid-stress element for thin and moderately thick plates", Int. J. Numer. Meth. Eng., 15, 1261-1278.   DOI   ScienceOn
29 Spilker, R.L. (1982), "Invariant 8-node hybrid-stress elements for thin and moderately thick plates", Int. J. Numer. Meth. Eng., 18, 1153-1178.   DOI   ScienceOn
30 Timoshenko, S.P. and Krieger, S.W. (1959), "Theory of plates and shells", Second Edition, McGraw Hill International Editions.
31 Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method verses displacement method for finite element analysis", Comput. Struct., 38(4), 377-407.   DOI   ScienceOn
32 Patnaik, S.N., Hopkins, D.A. and Coroneos, R. (1986), "Structural optimization with approximate sensitivities", Comput. Struct., 58, 407-418.
33 Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2, 1333-1336.   DOI
34 Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements". Int. J. Numer. Meth. Eng., 19, 1741-1752.
35 Choi, C.K. and Park, Y.M. (1999), "Quadratic NMS Mindlin-plate-bending element", Int. J. Numer. Meth. Eng., 46(8), 1273-1289.   DOI   ScienceOn
36 Patnaik, S.N., Coroneos, R.M. and Hopkins, D.A. (2000), "Compatibility conditions of structural mechanics", Int. J. Numer. Meth. Eng., 47, 685-704.   DOI   ScienceOn