• Title/Summary/Keyword: Serendipity element

Search Result 27, Processing Time 0.018 seconds

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

Correction of node mapping distortions using universal serendipity elements in dynamical problems

  • Kucukarslan, Semih;Demir, Ali
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.245-256
    • /
    • 2011
  • In this paper, the use of universal serendipity elements (USE) to eliminate node mapping distortions for dynamic problem is presented. Rectangular shaped elements for USE are being introduced by using a flexible master element with an adjustable edge node location. The shape functions of the universal serendipity formulation are used to derive the mass and damping matrices for the dynamic analyses. These matrices eliminate the node mapping distortion errors that occurs incase of the standard shape function formulations. The verification of new formulation will be tested and the errors encountered in the standard formulation will be studied for a dynamically loaded deep cantilever.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.

A Study on the Development of a Three Dimensional Structured Finite Elements Generation Code (3차원 정렬 유한요소 생성 코드 개발에 대한 연구)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.11-17
    • /
    • 1999
  • A three dimensional finite element generation code has been developed attaching simple blocks. Block can be either a quadrature or a cube depending on the dimension of a subject considered. Finite element serendipity basis functions are employed to map elements between the computational domain and the physical domain. Elements can be generated with wser defined progressive ratio for each block. For blocks to be connected properly, a block should have a consistent numbering scheme for vertices, side nodes, edges and surfaces. In addition the edge information such as the number of elements and the progressive ratio for each direction should also be checked for interfaces to have unique node numbers. Having done so, user can add blocks with little worry about the orientation of blocks, Since the present the present code has been written by a Visual Basic language, it can be developed easily for a user interactive manner under a Windows environment.

  • PDF

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 겹 3차 유동 함수법)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.13-23
    • /
    • 2008
  • This paper is an extension of previous study[1] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite (serendipity) cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires four degrees-of-freedom at each element corners. Those degrees-of-freedom are the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational basis functions from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[2].

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.;Jumaat, Mohd. Zamin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.625-642
    • /
    • 2010
  • The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

Platform Thinking within the Third Generation Science Park Concept: Emerging Cases from Finland and the Netherlands

  • Kakko, Ilkka;Mikkela, Kari
    • World Technopolis Review
    • /
    • v.5 no.1
    • /
    • pp.30-46
    • /
    • 2016
  • This paper is intended as an opening of a dialog on how to apply platform thinking in the development of innovation environments. It will briefly describe a new STP (Science and Technology Park) concept called 3GSP (Third Generation Science Park), which is gaining momentum in Finland. The paper explains the fundamental changes that are currently taking place in the global innovation environment and explains why platform thinking is becoming an essential element in ecosystem development. The theoretical background and classifications of platforms are described and the benefits to be gained from STP perspective are highlighted. The paper emphasizes especially the role of so called 'competence platforms' and explains the main characteristics of a fully working competence platform. The role of competence platforms in understanding serendipity and as a fundamental factor in building the team is also highlighted. The paper analyses from STP perspective several practical examples, where platform thinking supports the emergence of new innovation environments, including Urban Mill (Finland) and Meetberlage (Netherlands). The requirements for comprehensive competence platform services are presented and their potential to support community building and therefore ecosystem development is illustrated. This analysis will provide STP practitioners with new models for applying platform thinking and will help to establish co-creation, open innovation and serendipity management practices. The case studies presented will help STP management teams to evaluate the benefits of competence platforms in different contexts.