• Title/Summary/Keyword: Sequential initial

Search Result 244, Processing Time 0.028 seconds

Design and Estimation of Multiple Acceptance Sampling Plans for Stochastically Dependent Nonstationary Processes (확률적으로 종속적인 비평형 다단계 샘플링검사법의 설계 및 평가)

  • Kim, Won-Kyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.8-20
    • /
    • 1999
  • In this paper, a design and estimation procedure for the stochastically dependent nonstationary multiple acceptance sampling plans is developed. At first, the rough-cut acceptance and rejection numbers are given as an initial solution from the corresponding sequential sampling plan. A Monte-Carlo algorithm is used to find the acceptance and rejection probabilities of a lot. The conditional probability formula for a sample path is found. The acceptance and rejection probabilities are found when a decision boundary is given. Several decision criteria and the design procedure to select optimal plans are suggested. The formula for measuring performance of these sampling plans is developed. Type I and II error probabilities are also estimated. As a special case, by setting the stage size as 1 in a dependent sampling plan, a sequential sampling plan satisfying type I and II error probabilities is more accurate and a smaller average sample number can be found. In a numerical example, a Polya dependent process is examined. The sampling performances are shown to compare the selection scheme and the effect of the change of the dependency factor.

  • PDF

Characteristics of Reoxidized-Nitrided-Oxide Films Prepared by Sequential Rapid Thermal Oxidation and Nitridation (연속적 급속열처리법에 의한 재산화질화산화막의 특성)

  • 노태문;이경수;이중환;남기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.729-736
    • /
    • 1990
  • Oxide (RTO), nitrided-oxide(NO), and reoxidized-nitrided-oxide(ONO) films were formed by sequential rapid thermal processing. The film composition was investigated by Auger electron spectroscopy(AES). The Si/SiO2 interface and SiO2 surface are nitrided more preferentially than SiO2 bulk. When the NO is reoxidized, [N](atomic concentration of N) in the NO film decreased` especially, the decrease of [N] at the surface is considerable. The weaker the nitridation condition is, the larger the increase of thickness is as the reoxidation proceeds. The elelctrical characteristics of RTO, NO, and ONO films were evaluated by 1-V, high frequency (1 MHz) C-V, and high frequency C-V after constant current stress. The ONO film-which has 8 nm thick initial oxide, nitrided in NH3 at 950\ulcorner for 60 s, reoxidized in O2 at 1100\ulcorner for 60 s-shows good electrical characteristics such as higher electrical breakdown voltage and less variation of flat band voltage under high electric field than RTO, and NO films.

  • PDF

Design of CMOS Op Amps Using Adaptive Modeling of Transistor Parameters

  • Yu, Sang-Dae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • A design paradigm using sequential geometric programming is presented to accurately design CMOS op amps with BSIM3. It is based on new adaptive modeling of transistor parameters through the operating point simulation. This has low modeling cost as well as great simplicity and high accuracy. The short-channel dc, high-frequency small-signal, and short-channel noise models are used to characterize the physical behavior of submicron devices. For low-power and low-voltage design, this paradigm is extended to op amps operating in the subthreshold region. Since the biasing and modeling errors are less than 0.25%, the characteristics of the op amps well match simulation results. In addition, small dependency of design results on initial values indicates that a designed op amp may be close to the global optimum. Finally, the design paradigm is illustrated by optimizing CMOS op amps with accurate transfer function.

A Study on Partial Pattern Estimation for Sequential Agglomerative Hierarchical Nested Model (SAHN 모델의 부분적 패턴 추정 방법에 대한 연구)

  • Jang, Kyung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.143-145
    • /
    • 2005
  • In this paper, an empirical study result on pattern estimation method is devoted to reveal underlying data patterns with a relatively reduced computational cost. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). Conventional SAHN based clustering requires large computation time in the initial step of algorithm. To deal with this concern, we modified overall process with a partial approach. In the beginning of this method, we divide given data set to several sub groups with uniform sampling and then each divided sub data group is applied to SAHN based method. The advantage of this method reduces computation time of original process and gives similar results. Proposed is applied to several test data set and simulation result with conceptual analysis is presented.

  • PDF

A Sequential Algorithm for Metamodel-Based Multilevel Optimization (메타모델 기반 다단계 최적설계에 대한 순차적 알고리듬)

  • Kim, Kang-Min;Baek, Seok-Heum;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1198-1203
    • /
    • 2008
  • An efficient sequential optimization approach for metamodel was presented by Choi et al [6]. This paper describes a new approach of the multilevel optimization method studied in Refs. [5] and [21-25]. The basic idea is concerned with multilevel iterative methods which combine a descent scheme with a hierarchy of auxiliary problems in lower dimensional subspaces. After fitting a metamodel based on an initial space filling design, this model is sequentially refined by the expected improvement criterion. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to understand and use. As a check on effectiveness, the proposed method is applied to a classical cantilever beam.

  • PDF

Testable Design for Zipper CMOS Circuits (고장 검풀이 용이한 Zipper CMOS 회로의 설계)

  • Seung Ryong Rho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.517-526
    • /
    • 1987
  • This paper proposes a new testable design for Zipper CMOS circuits. This design provides an additional feedback loop (called self oscillation loop) whichin the circuit, for testability. The circuit is tested only by observing the oscillation on the loop. The design can be applied to the multistage as well as the single stage, and can detect multiple faults which are undetectable by the conventional testing method. The application and evaluation of test patterns become easy and fault-free responses are not necessary. If the conventional testing method is applied to the sequential Zipper CMOS circuit with the LSSD design technique, it has the serious defect that the initial value may change due to intermediate test patterns and much time taken to apply the necessary test patterns. By using the proposed design, however, the sequential Zipper CMOS circuit with the LSSD design technique can be easily tested without such a defect. Also, the validity of the design is verified by performing the circuit level simulation.

  • PDF

Computer Simulation of the Computational Method in Fuel Optimal Control

  • Lee, B.J.
    • Nuclear Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 1972
  • Determination of a two-point boundary value problem is the key of finding the control function u(t) with the application of the fundamental idea of Minimum principle. The late development shows the discovery of the initial costate vector for the solution of a two-point value problem. As a new technique of determining the optimal control function, Newton's Sequential method is examined about a number of engineering problems and found available.

  • PDF

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

Computational Method of Fuel Optimal Control in Regulator System

  • Lee, Bong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.79-85
    • /
    • 1969
  • Determination of a two-point boundary value problem is the key of finding the control function u(f) with the application of the fundamental idea of Minimum principle. The late development shows the discovery of the initial testate vector for the solution of a two-point value problem. As a new technique of determining the optimal control function, Newton's sequential method is examined in this paper.

  • PDF

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.