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In this paper, a design and estimation procedure for the stochastically
dependent nonstationary multiple acceptance sampling plans is developed. At
first, the rough-cut acceptance and rejection numbers are given as an initial
solution from the corresponding sequential sampling plan. A Monte-Carlo
algorithm is used to find the acceprance and rejection probabilities of a lot. The
conditional probability formula for a sample path is found. The acceptance and
rejection probabilities are found when a decision boundary is given. Several
decision criteria and the design procedure to select optimal plans are suggested.
The formula for measuring performance of these sampling plans is developed.
Type I and I error probabilities are also estimared. As a special case, by setting
the stage size as 1 in a dependent sampling plan, a sequential sampling plan
satisfying type I and II error probabilities is more accurate and a smaller average
sample nurnber can be found. In a numerical example, a Polya dependent process
is examined. The sampling performances are shown to compare the selection

scheme and the effect of the change of the dependency facror.

1. Introduction

Multiple sampling plans can be derived from Wald's
[12] sequential sampling plans because 1t is
sometimes more practical to take a sequence of
groups of items instead of sequences of items. The
ordinary sequential chart may be set up; but, instead
of plotting points item by itemn, the results are
accumulated by groups. For example, the results of
the first 20 iterns are plotted, then the results of the
first 40, then the first 60, and so forth. Decisions
are made as before, but at less frequent intervals in

terms of the inspection process. Using such group
methods affects the Operating Characteristic(OC)

curve and Average Sample Number(ASN). The
former is affected very much under certain
conditions. The ASN is very likely to be increased,
for taking groups means that a decision that might
be made on the jth item inspected will have wo be
put off until the whole group is inspected. It may
also mean that a decision will be postponed to later
groups, which will further increase the amount of
inspection. Group sequential plans are often
truncated. That is, after a number of samples have
been taken, the plan calls for acceptance or rejection.
They then become multiple sampling plans.

It is true, however, that there are still no unified
methods pertaining to the multiple sampling plans.
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On the other hand, a sequential sampling plan can
be regarded as an extension of a multiple sampling
plan. In other words, sequential sampling plans can
be derived from multiple sampling plans by setting
stage size # as 1. Butr such a reverse way is only
possible under the assumption that multiple
sampling plans can be easily found. Unfortunately,
designing multiple sampling plans is never simpler
than designing sequential sampling plans. A
sequential sampling plan has anadvantage in thar it
can give a smaller average sample number when
compared to other non-sequential sampling plans. A
sequential sampling plan derived from SPRT
(Sequential Probability Ratio Test), however, is
prone to unsatisfying the type 1 and II error
probabilities especially when the ratio of fraction of
defectives is big. Although several analytical
methods{7,8,12] have been suggested, they cannot
guarantee the required type I and II error
probabilities  sufficiencly. When we design a
sampling plan, we must also consider the existence
of dependency. In general, if a dependency exists in
a sampling plan, it is very complicated or impractical
to handle the problem analytically. Even in
independent processes, it is very difficult to solve
this problem analytically because of computational
difficulties in finding the conditional probabilities
due to the complex step function shapes of the
acceptance and rejection boundary lines. Moreover,
the nonstationarity due to the dependency in
dependent processes makes this problemm more
difficalt. One of the approaches solving such
dependency problems is the wuse of simulation
whereby the problem of finding conditional
probability can be solved by numerical methods.
There have been several studies about the
dependent sampling plans. Bhat, Lal and
Karunaratne{1,2] approached the single acceptance
sampling problem with an augmented Markov chain
matrix. Broadbent{3} proposed a work estimating
the lag 1 serial correlation p. The process normally
produces good items, but if a defect is caused, the
same cause produces a run of bad items. These
analytical studies are limited to special cases only,
mainly Markov processes, due to the mathematical
complexities of the probability strucrure. Moreover,
most efforts have been concentrated on single
sampling plans. Even for such single sampling plans,
the analysis is extremely complicated. Nelson[9] has
developed a method for estimating single acceptance
sampling plans for general production process

models by simulation. Kim{5} developed an efficient
design and estimation procedure for the dependent
double sampling plans when the dependent
production processes can be simulated. He also
developed the general methodologies of the design
procedure for the sequential sampling plans when
there exists dependence between serial sample
data[6]. Friedlander{4} used che laztice filter method
for adaptive processing when the process shows
correlation between serial data. But this study is
limited to time series pattern only. The purpose of
this paper is to develop the optimal design
procedure of the dependent multiple sampling plans
when we inspect grouped items in order that they
are produced in the same order that this group items
are produced. In the following sections we will
discuss the design problems, the nonstationary
probability structure, and the measure of
petformance for the dependent mulriple sampling
plans. A Polya dependent process will be shown as
a numerical example.

2. Design of Dependent Multiple Sampling
Plans

In this section, we will discuss how to design
multiple sampling plans from sequential sampling
plans and how to find the type I and II error
probabilities of multiple sampling plans. Let us
consider the sequential sampling plans first. The
implementation of SPRT starts from finding the
acceptance and rejection numbers at each sample
time. Consider a production process having a lot of
size¢ N. We assume that the production has the
stochastic output process (X, X5 -+, X, It the
state of the process producing the ith item is good,
then X; =0, and if the process is bad, then X, =1.
The inspector tests each item sequentially until a
decision is made. The probability of producing a
defective part varies according to previous items. For
i=1,2,..,N, define the probability ratio,

Lxy, - x) =y, x) ool 0 x),

where p,(x;,+,x;) is the joint probability density
of the first 7 items when the fraction of defectives
is LTPD, and py(x,,--.x;) is the joint probability
density of the first i items when the fraction of
defectives is AQL. The probability ratio test is
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rejected  if Ax;, -, x)=(1— A)/e and accepred If
Kz, x)28/(1 — ). Wald{13] proved that the
above fundamental inequalities remain valid for a
test procedure in spite of the dependency of the
successive  observations, provided that the
probability is one, e.g., the procedure will eventually
terminate.

In general, it is difficult to find the joint
probability densities p,(x,,---,x) and  plx;, -, x2)
analytically if there exists dependency between the
processes. However, by using simulation, we can

find the dependent joint probability densities. Let us
define

f 5P the joint probability that there are exactly
/ defectives among the 7 items when the
fraction of defectives is LTPD;

AQL

49 the joint probability that there are exactly

7 defectives among the i items when the
fracton of defectives is AQL,

u; : the number of defectives for the test to be
rejected at the sample number 7; and,
{; : the number of defectives for the test to be

accepted at the sample number 7.
The method for finding the probabilities f ™%
and f 49 is explained in Kim[5,6} in depth. The
rejection number z; and acceptance number /; at

the ith sample number can be found from the
following equations. For /=1,2,...,N, we get

u;, = minimum ; satisfying
£ 5% = (1-BYa, and,
f; = maximum j satisfying

FEPLF4% = 50—,

Now let # be the stage size of 2 multiple sampling
plan, then $(= N/n) is the number of stages. For
the stage number £=1,2, ..., §, define the following
events:

A = {The test is accepted ar the stage &};

R, = {The test is rejected at the stage &}; and,

G, = {The test is neither accepted nor rejecred at

the kth stage, ie., continued to the next
stage £+1}.
Since A,, R, and G, are mutually exclusive, we
have

Pri{G;_}=Pr{A, U R, U Gel)s
= Pl’{Ak}‘i‘ Pr{R,@}+ PI'{G;,},
and initially Pr{G.}=1.

The probabilities of acceptance Pr{4,} and the
probability of rejection Pr{R,} at the stage £ can be
found by simulation or by analytical methods. Let
us define the following variables to find these
probabilities.

T, : total number of defective items up to the

stage &;
: number of defective items among the n
items at the stage £ only;

Pr{T,=1d} = p,: probability thar total namber
of defective items up to the stage £ is 7;

Pr{Cp =il Ty-1=7t = hy;; : probability that
the number of defectives among # items at
the stage £ is 7 under the condition that
total number of defectives up to the stage
k-1 is 7; and,

Pr{C.,2i | Tyoy=7} = g;.; : probability that
the number of defectives among n items
at the stage k is i or more under the
condition that total number of defectives
up to the stage k-1 is j.

The probability p,; can be found recursively if
we know the probability of the previous stage &-1.
For this, let @, and », be the acceptance and
rejection number at the stage £ respectively. Since
the shape of acceptance and rejection boundary lines
forms step, the probability structure is complex. So,
to make notations simple, we need the following
three index range interval sets:

Jelk—1D=[as_,+1, r,_y~1] : range for rejection

and continuation probability formula at the stage

£—1;

Jalk—1D=[a, 1+1, min(r,_;—1, ay)] : range for

accept probability formula at the stage &—1;

Jelk—1={a,+1, min{r,_,—1), 7] : range for

continuation formula at the stage £-1 when the

total number of defectives up to the stage £ is

given as 7.

Ck. n

The method of determination for the acceprance
number ¢, and rejection number will be discussed

in the next section. Define the initial variables »,
mo=1, ay=—1, n=1, T,=0. The probability
pe; for i eJx(k) is:

pe; =Pr{T,=17}
- feg—l)Pr{Tk—l=jmck,n:3'_j }
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- ;e%—l)Pr{Tk_l:j}
Pr{Ci,=i—j | Tp-r1=7}

= jE/;_Dbk—l,;' Fopi-sis

The three event probabilities at each stage & are
as follows:

Pr{R,} =Pri{iTz7
= J,EE_DPr{THZfﬁCk,?,Z?’rﬂ

- iEIR%—l)Pr{Tk_IZf}
Pr{Ck‘,,zn—jI To1=7

,-EB;_ Dﬁk—l.j 8k r—ii

PI’{A,{»} = Pl’{ Tkﬁﬂk}
= }EL‘%_DPT{Tk—1=jnck.n£ak_j}

= J_E%_DPI{ Tk-1=f}
Pr{Ck_,,Sak—}'l Tk—l=j}

E_Dm-l.,- (1—gra-i+1.0)

ela

iE%k) Pr{T,=d= se%‘be) fef§—1)

Pr{T, 1=/NCra=i— 1

I
o fefc%—l)pk L Pk

In the independent Bernoulli process, since the
number of defective items of the previous stage is
not dependent on the past event {T,—,=j}, the
probability of conditional event {Cp,| Ty-1} i
simply the same as that of a binomial, that is,
kk,i-—j,jz( 3‘_?’_3};)1)?'—:‘(1__3)”—(1'—}') lf E_JS?E, or 0
otherwise, where p is the fraction of defectives of
the process. Similary,

8ri-ji= sijhk.s,f= S;_.j( ?; )I)s(l -t

if i—j<n, or 0 otherwise.

and
Pr { Gk}

Il

Il

In the dependent process, however, 1t is very
difficulc to find the conditional probability ;- ;
and g, ,_;,; analytically. The fraction of defectives p
in a dependent process can be affected by the
number of cumulative defective items, the starting
point of the inspection, the order of inspection, the
last item’s status and the sample size, etc. This in
turn affects the rejection probability 7, ;_;; and

g4 i_,; because it depends on p. The number of
defective items among the n items starting from the
stage number 1 can be different from the one
starting from the stage &, where £>1. This
nonstationarity is especially an important factor in
designing dependent multiple sampling plans. If a
decision of acceptance or rejection is not made at the
stage k, the next stage must be inspected. But the
probability structure of the next stage is no more the
same as that of the former stages. Therefore, from
now on we will discuss the method of finding the
nonstationary probabilities and the distributions
using simulation.

3, Simulation Implementation for the
Nonstationary Probability

Let us see the formula of the probability 2, , again:

pe; =Pr{Te=1¢}
= ;-E%_l)Pr{Tk'l:ij*'”: i_]}

The probability p, ; can be estimated by the ratio
of the number of simulation replications satisfying
the event { T,= 7} to the total teplication number m.
The counting proceeds sequentially from the first
stage to the last stage. The joint probability in the
above formula can be found by counting the
simulation replications satisfying the joint event
{Too1=iNCsn=i—7. We can draw the accept
and reject boundary lines of a multiple sampling
plan on the x-y plane like those of 2 sequential
sampling plan, which usually forms step function
shapes. The probability p,; is the sum of the
probabilities of sample paths from point (0, 0) to
point (&, 7) in the plane.

The counting procedure by simulation consists of
two steps. First, select all sample paths reaching the
continuation range of the stage £ —1. Next, select
only the paths going to the point (&, 7) from there.
We count all simulation replications satisfying these
two path conditions, and by dividing this count by
m, the estimator of the probability is obtained. Prior
to starting the process of path finding, we need to
record the numbers of defectives at every stage and
replication in advance. This is possible by counting
the process output values according to the process
state. To implement the counting, let us define the
following variables. Here, index r represents the rth
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simulation replication.
Uy, » : number of defectives among n iterns ac the

stage £ of the rth simulation replication,
and

X, : process output value of the jth item which
is 0 or 1 at the rth simulation replication.

We can generate U, , easily:

Us.r= f=(g)x+1I(Xf-’: D.

Now, to select the paths efficiently, we define the
following list set and variables:
Ly_y,; ¢ alist set of which elements are simulation
replication order numbers satisfying the
event { Ty—, =7 at the stage k-1;
Vi-1,; © size of the list set L, ,;, i.e., number
of elements of L,_, ;; and,
I, - the rth element of the list set L, , ;, ie,
b1.jr=Li1,;
Define the initial list set and variables : L, o=
{1,2,8,.m}, hho,=r for r=1,2,...,m, and
Vi.o=m. Then the list set L, , ; is represented as :

Lk—l._f:{” gk—l,j,?':t, for ?’21,2,'", Vk—l,f}-

The list set L,_; ; contains all path information
reaching the continuation range of the stage k-1.
Among these V,_, ; simulation replications, count
the replications satisfying the event {C, ,=i—j} at
the stage k. Then the count is the number of joint
event { Ty =/NC; ,=i—j}. The estimated joint
probability can be found as follows:

Pr{Ts=iNCer=i—J
Vi 7
KUk,r= i—J,

for = Ik—l,j,?’ELk_l‘j)'/m

r=

For the second index of U in the above formula,
we used ¢=1/,, ;,, since t is one of the simulation

replication orders which satisfy the path condirions
reaching the continuation region of the stage &-1.
This ¢ corresponds to the event { T,_,= 7. Next,

U, = i—j corresponds to the event {C,,=i—j,
which sarisfies selecting the sample paths going to

the point (&,7). The indicator function X - ) adds one
more count if the simulation replication order of
number t satisfies the joint event. Since thete can be
several sample paths reaching the point (,/) from
(-1, 7), the above procedure is repeated for all
jeJs(k~1). Therefore, the estimated probability

pk'f is:

Vieo.s
Pum 5 8 K in

for t=1,_;, €L, }im

The sample path information of reaching the
point (£,7) just obtained must be saved to the list set
L, for the next stage k. The list set L, ; of which
element is the simulation replication order number
satisfying the joint event can be newly generated as
follows: For jeju(#),

L= }_E]E(%_D{ﬂ b1, = L

and Uk‘g: 3‘_}., for ?'=1!29"'9Vk—1‘j}

Similarly, we can find the estimated probability of
Pr{R}and Pr{A,} as follows:

Vicy.s
aw=Frla)= 3 3 KU~ar,
for t=0) ;, €L, )im

b= ﬁ{Rk}= },E]ﬁ%_n 1:2; KUy =7

for t=1le_1;, ELi-1)m
The above procedure is repeated twice, i.e., under
the conditions that fractions of defectives p are AQL
and LTPD. To denote this let's add the upper
indexes AQL and LTPD. Since the multiple

sampling plans must be finished before the last stage
eventually, we have:

S PHRIN + Br{Af9)]=1
and [ PH{RE™)+ Pr{af™)]=1.

Now, the type I and II error probabilities can be
estimated as follows:

i B PR w3 B
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4. Searching Schemes Satisfying the o and
4 Conditions

In the next section we will discuss how to find the
best sampling plans given py, ;. a, 8 and stage size
#.Decision of the rejection and acceptance boundaries
in multiple sampling plans is not a simple problem.
If we simply take the last acceptance and rejection
numbers in each sequential sampling group as the
rejection and acceptance numbers at each stage in
a multiple sampling plan, the type I etror pro-
bability will be smaller than the required one. The
reason is that if a large rejection number is applied
to all points in that group, the chance of rejection
of the group becomes smaller. On the contrary, the
type 11 etror probability will become larger, because
if a large acceptance number is applied to all points
in that group, the acceptance chance of the group
becomes larger. The reverse phenomena will occur
if we simply take the first point of each sampling
group as the rejection and acceptance number at
each stage in a multiple sampling plan. Taking the
middie point of each sampling group, the type I and
IT error probabilities can be smaller or larger accor-
ding to the sampling status. Therefore, just simply
taking arbitrary points is not desirable since they
cannot satisfy the required type I and II error
probabilities. In view of a mathematical progra-
mming problem, the multiple sampling plan is to
find the rejection number r, and acceptance number
a, for £=1,2,..., § by solving the below:

Min. funca,a, B, B

s. t. a= g}l'P\r[Rﬁ@‘}sa : @ condition
B= Z‘P\r{A’;TPD}Sﬁ : B condition

The object function func(w, e, B, may be
defined as total risk function |a—al+|3— 4, 0r a
-only risk function |2—al, or g-only risk function
| 32— Al, or average sample number function ASN
(a,a BB, or average total inspection function
ATK @, a, 8, 8) or any combination of these etc.,
according to the conditions of sampling envi-
ronments. Solving the above nonlinear integer
programming ptoblem by mathemartical progra-
mming is extremely difficule. Another approach is

the use of a numerical enumeration search
method. However, the simple enumeration method
requires too many enumerations. For example, if the
number of stages is 30 and the possible number of
values for each », and g, are 10, then the toral
enumeration count is 10% %, which exceeds the
normal limit of calculation. Therefore, we need other
methods to reduce the enumeration. Instead of
searching », and g, for all stages concurrently,
searching them stage by stage can reduce
enumeration counts. For all stages, initial decision
boundaries r, and g, can be set from the group
sequential sampling plan which gives upper limit of
rejection numbers and lower limit of acceptance
numbers.

The initial acceptance number at the stage & is
taken as the first acceptance value of each group £
and the initial rejection number is taken as the last
value of each group & a,= e+ and 7= up,.
The initially estimated @ and 2 are lower than «
and g because of the wider decision boundaries. By
narrowing these decision boundaries, a and % can
be improved. For this, we wil consider four
searching schemes called nearest @ search, nearest 8
search, central o search, and central g search.

The nearest @ search starts from the first
stage(¢=1). At this stage, decrease the rejection
number #, by 1 in order to increase @ until just
before o exceeds . During the procedure, », must
be greater than or equal to a,+2, otherwise the
sampling test cannot be continued to the next stage.
Only at the last stage is 7,= a,+ ! allowed in order
to stop the sampling test. After decreasing 7,
increase the acceptance numbet g, by 1 in order to
increase P until just before 7 exceeds 8. Also the
restriction @+ 2 < r, must be kept except in the last
stage. Now, since the rejection and acceptance
number for the first stage has been decided, increase
the stage number £ by 1 in order to start the second
stage search. This procedure is repeated to the last
stage. One of desirable properties of good sampling
plans is the ASN should be as small as possible. This
searching method makes the ASN as small as
possible by assigning the acceptance probabilicy

Pr{A,} and rejection probability Pr{R,} as large
as possible to the earlier stage. The type 1I error
probability of this searching policy is apt to be less
satisfied compared to the type 1 error probability,
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since £ condition is satisfied afrer the o condition.
The searching procedure of the nearest 8 search is
the same as that of the nearest o search except for
the searching order of type I and II error proba-
bilities, i.e., a2, first then », next. The rejection

numbers of the nearest @ search are smaller than
that of the nearest g search, since in the nearest ¢
search, 7, is decreased to the minimum within the

range of satisfying the # condition. Therefore, the
two decision boundary lines of the nearest # search
are positioned lower than that of the nearest g
search.

In the central o search, », is decreased by 1

instead of decreasing to the possible minimum, and
then g, is increased by 1. The « and 2 conditions

are checked every time when », decreases and g,

increases. If the ¢ condition is satisfied, decreasing
7 is held, and if the g condition is satisfied,
increasing a, is held. The term “held” is used
instead of “stop,” because any change of 7, or 4,
affects the type I and II error probabilities. That is,
if #, is decreased, % is increased but 3 is decreased.
Changes of 7, and g, are repeated until just before

@ and P exceeds o and 8. Now, the searching
procedure for the next stage begins and chis
procedure is repeated to the last stage. The decision
boundary lines become narrow towarding to the
central part of the initial boundary lines. Like the
case of the nearest 8 search, the central g search is
the same as the central ¢ search except the searching
order, ie., a, first then #, next. '

5. Measures of Performance and A
Numerical Example

In this section, in order to check the performance of
the multiple sampling plans, three measures, ie.,
Average Sample Number(ASN), Average Total
Inspection(AT]), and Average Outgoing Quality
(AOQ) will be explained and a Polya sequential
model will be given as a numerical example. Since
we found the acceprance and rejection probabilities
at each srage in the previous section, the ASN can
be computed as follows.

ASN = 3% kal Pr{AQ + Pr{Ry)]

If the test is accepted at the stage k, then the total
inspection is simply kn. If the test is rejected, then
the whole lot will be inspected, hence the toral
inspection is the lot size N. Therefore, the ATI js:

ATI = 33 eePr(A)+ 5 NPr(Ry.
To find the AOQ we need to know the average

-nuniber of defective items remaining in a lot and the

average number of items actually shipped after
inspection. Let us define €, be the cummulative

number of defectives among the first # items, and
7x;= Pr[ C,27] be the probability that the number

of defectives in # items is j or more, and the method
of finding this probability is explained in Kim{5,6].
We can obtain the expecration of C, as follows:

EC,]= EPI{C”>J}

= ZPI{Cﬂ2}}= gym}.= 27”‘},

Ler [Np]/ represent the number of defective items
among the item number 7 through 7, where j>i. The
expected value of [Np]’ can be found as follows:

E([Npl} = E{[Npl}} — E{ [Np1Th)
= E[_Cj]_E[Cf—J]
= z‘?’;}:— g?’(i—l).f
Let N be the total number of defective icems

remaining in a lot of size N after inspection. Also
ler Np| R, and N,| A, be the number of defective

items remaining in a lot of size N under the event
Ryand A, for k=1,-,S. Then the expected value

of Ny is :
EIN;|= 3 ELN, | RiPr(R)
+ 3 BN, | APr(A)
The firse sumumation term of the right hand side
becomes O since there are no defective items in 2

rejected lot. Therefore, we have

FLNsl= 3 FINy| AJJPr(A}), where

FINp | Ad=E{IN,Y )

= & VNiT 2‘?'&»,;
= =
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Now let N represent the number of items
actually shipped after inspection. If all defective
items found are replaced with good ones, then
Ns=N. When the defective items found are
discarded and not replaced with good ones, E[ ]
is calculared as follows. If the procedure is rejected
ar the stage £, then the actual number of shipped
items is N—y,, because the », defective items are
discarded, and the probability of this event is
Pr{R,. Similarly, if the procedure is accepted at
stage £, then the actual number of shipped items is
N— 7, because the », defective items are discarded, Figure 1. The boundary lines of acceprance and rejection
and the probability of this event is Pr{A,). numbers for the Polya dependent process.
Therefore, we get the AGQ from the definition:

0 5 10 15 20 25 30
Humbxer of Defectives

Table 1. The first sample number 7 for the test to be
AOQ = EIN,)/EIN], rejected or accepted when the number of defecrives is 7,

or /; and the dependency factor is 4

where

EINs] = Z:,[(Nh r) Pr{RJ + (N—ap)Pr{A] u; for reject or ; forj ¢=0.00 7=0.01

accept reject |accept . reject | accept

Now, we will examine a Polya dependent process 0 - 24| - | 26
model. In a Polya sequence(Sarkadi and Vincze[101) 1 1 49 1 62
the model is highly dependent on the past history. 2 3 74 3 0 96
Unlike the Markov model which depends on only 3 28 | 99 23 | 128
the l'ast state, the Polya sequence depends on all the 4 s3 | 124 | 44 | 159
previous states.

Let Pr(X,=0)= 1~ p, Pr(X,= 1) p, where  is 5 78 | 149 | 63 | 191
the fraction of defectives at start of the process. The 6 103 175 | 83 222
fraction of defectives at the (z+1)th sample is 7 128 | 200 ; 102 | 252
affected by the number of defective items found up 8 154 | 225 | 121 | 283
to the nth inspected item, sampled number n and 9 179 | 250 | 141 | 213
the dependency factor g as follows 10 204 | 275 | 160 | 344

Pr(X, =1 | X,= e Xy=e3,.... X, = ¢,) 1 229 1 300 | 179 374
12 254 | 325 | 198
= P"(X”H:l [ Xyt Xo= 2 ef:s) 13 279 | 351 | 217
— btsqa 14 305 | 376 | 236
1+ ng o
15 330 235
where 0<p<<1, ¢>>0 , and ;=0 or 1. 16 355 - 274

If the dependency factor ¢ is 0, the model is 17 380 - 292
equivalent to the independent model and the 18 311
sequence becomes a binomial sequence. Now 19 330
suppose a new tool is used at the beginning of 20 ' 349
production. We want to produce a lot of 400 items :
and the produced n items are examined in each stage 21 368
k successively. Assume with the acceptable tool wear 22 387

the AQL is 0.01 with a type [ error probability ¢ of
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Table 2. The acceptance number @, and 7, rejection number when sample size # is 30

Stage k | 1| 2| 3[4 | 5] 6|7 (18|99 |10[11]12]13; 14

i kn 30| 60 | 90 | 120|150 | 180|210 |24¢| 270} 300|330 360|390 | 400
INI ap|-1lof1 |23 |56 |7 |89 |11|12{13] 14

Fe 2131457819 |10]11|12]13|13|14] 15

NA gz |O|1]|1]213]|5]|6 8|9 |11}12[13| 13
o223 45| 7|89 |10[11|13]13|14]| 14

0.0 NB % o|l1|2(3|5{6|71{8]|9|1W0j11|12]|131] 13
0 vel2|34]5| 7|8 |9 |10]11]12]13 13| 14| 14
ca L& ot1l1|2|4|5i6|7]8|9|11[12]13]13

el 2313467891011 |13]13]|14| 14

s % o|lt1|l1|2|4|s5|6|7 |89 |11]|12]|13} 13

ro 2133|4617 |87 9 |10]11{13|13| 14| 14

NI apl1lo|lo| 1| 2|3 |4|5|6|7|8]9110]21

re|l 2135|618 |1W}11|13;,14]|16|17| 19|21 22

NA a|lol1i1| 1] 2|3 |4 |5 |67 |87]9|10]11

vp| 23133 |4|5|6]7|8 101112 12

0.0 NB gt 0| 1314|689 |11]12]14]15|1719] 20
1 el 203 (5|68 |1l11 (1314|1617 19|21 21
A a o123 4|6 |7 |9 |10[12|13]15|17 | 18

¥o| 23|45 |68 1112|1415 |17 | 19| 19

B % ol1l2]3|s|7|8|10]11]13]|14|16)18] 19
rel213|4(5|7]9t10[12}13]15|16|18)|20] 20

In the case when more rapid tool wear makes the
product quality level poorer, assume the specified
LTPD is 0.1 with type II error probability 8 of 0.1.
Let us consider two cases, i.¢., the dependency factor
¢ is 0 and 0.01, which corresponds to independent
and dependent cases respectively.

To compare the multiple sampling plans with the
sequential sampling plans, the first sample numbers
i for the test to be rejected or accepted when the
number of defectives is 2; or [; of the sequential
sampling plans are summarized in Table 1. For an
example, when 4=0.01, if no defective item( /,=0)
is found until the sample number 26, or 1 defective
item( /;=1) is found berween the sample number

27 and 62, etc., then the test is accepted.

The first sample number becomes smaller for fixed
u; or the number of defectives becomes larger for
the same sample number as the dependency factor

g deviates farther from 0. This means that if more
dependency exists between the process data, then

the more defectives, consequently more samples, are
required for the test to be rejected. In case of
acceptance of the test, however, this situation is
different.

The first sample number becomes larger for fixed
li or the number of defectives becomes smaller for
the same sample number as the dependency factor
q increases. This means that for the test to be
accepted fewer defectives are needed as dependency
increases. Therefore, we can conclude thac if the
process is more dependent, it is more difficult to
finish the test early as more samples are required.
<Figure 1> shows the graph of decision bound-
aries, i.e., acceptance and rejection lines. In the
graph, the upper 2 lines ate acceptance lines and the
lower 2 lines are rejection lines.

Lines of the same dependency have the same
symbol marks in the graph. <Figure 1> shows that
the boundary line gap between the acceptance and
tejection lines becomes wider if g increases. This
means that the more dependent the process, the
chance of test continuation at each sample number
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Table 3. The estimated type I and II error probabilities, and measures of performance

Stage Schem AQL LTPD
sien| 7| e | “| 7 [asn| AT | 40Q | asn ]| ATI AOQ
0.00f SEQ [ 486 [ 980 | 285 | 47.2 | 883 | 17.7 | 363.7 | 912
0.01 6.14 | 10.13 | 361 | 59.2 | 851 | 25.0 | 363.0 | 928
INI | 490 | 9.67 | 286 | 47.5 | .882 | 17.8 | 364.1 | .900
NA 1998 999 | 252 | 64.1 | 841 | 129 | 362.9| 931
0.00| NB 997 | 999 | 252 | 64.1 | 841 | 129 | 362.9 | 93]
CA | 996 | 950 | 25.7 | 64.7 | 839 | 13.0 | 364.7 | .885
. CB |9.97] 999 | 252 | 64.1 | .841 | 129 { 362.9 | 931
INI | 655 | 11.19 | 35.9 | 59.5 | .853 | 25.7 | 360.9 | .986
NA | 899 | 9.82 | 49.1 | 82.8 | .793 | 21.3 | 364.7 | .887
0.10| NB | 889 | 10.00] 49.1 | 826 | .794 | 21.3 | 364.4 | 894
CA | 889 | 1000 | 49.2 | 828 | .793 | 21.3 | 364.4 | .894
CB | 889 |10.00| 49.2 | 82.7 | .793 | 21.3 | 364.4 | .894
INI | 281 | 273 | 49.1 | 59.5 | .853 | 28.5 | 390.5 | .239
NA | 834 486 | 363 | 66.6 | .853 | 23.6 | 382.2 | .446
0.00| NB |4.18 | 952 | 324 | 48.0 | 881 | 23.6 | 365.5 | .868
CA | 828 | 495 | 36,1 | 66.3 | .835 | 23.6 | 382.0] 453
L0 CB | 418 952 | 324 | 48.0 | .881 | 23.6 | 365.5 | .868
INT [ 492 | 494 | 604 | 78.2 | 814 | 38.8 | 386.1 | .354
NA | 999 | 891 | 34.6 | 71.2 | 821 | 24.1 | 367.8 ¢ .809
010 NB | 880 | 998 | 33.6 | 659 | .835 | 24.0 | 363.8| .909
CA 1883|995 | 33.6 | 66.0 | 834 | 24.0 | 363.9 | .907
CB | 880 | 998 | 33.6 | 65.9 | .835 | 24.0 | 363.8 | .909
INI | 523 | 019 | 79.0 { 97.6 | .758 | 37.1 | 399.4 | .015
NA | 606 | 490 | 40.2 | 61.3 | .848 | 34.8 | 382.0 | 451
0.00] NB 477 499 | 39.1 | 563 | .861 | 34.9 | 381.8 | 458
CA | 604 | 490 | 40.1 | 61.2 | 848 | 34.8 | 382.0 | .451
30 CB [479 | 498 | 39.1 | 56.3 | .860 | 34.9 | 381.8 | 458
INI | 821 200 | 939 | 122.8| .707 | 45.8 | 396.6 | .086
NA 979 | 797 | 38.1 | 71.7 | .820 | 36.1 | 371.0! .729
0.10| NB | 7.01 | 942 | 369 | 62.2 | .844 | 36.3 | 366.6 | .839
CA | 750 ] 861 | 374 | 64.2 | 839 | 36.2 | 369.0 | .778
CB | 744 | 864 | 37.4 | 64.0 | 840 | 36.2 | 369.0 | .780

becomes higher. In other words, it is unlikely to
finish the test early if the process is more dependent.
Note thar the independent case(g=0) has a narrower
gap and the decision boundary lines are parallel. The
dependent case does not have parallel slopes. Conse-
quently, the average sample size of the dependent
process necessarily becomes larger as ¢ increases. The

acceptance numbers g, and rejection numbers ¥,

at each stage £ according to the dependency factor
g and the search scheme when sample size # is 30,
are shown in <Table 2>, In the table, INI, NA,
NB, CA, and CB tepresent the initial plan, the
nearest ¢, the nearest 3, the central ¢ ,and the
central g search, respectively. The negarive value ~
1 in the table means that the acceptance decision
cannot be made at that stage. In the dependent
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Table 4. The acceptance and rejection probabilities in percenc (=30, ¢=0.00)

Stage & T1 213 ]4]5] 6789 wlu]iz]13 14
kn 20 | 60 | 90 | 120|150| 180 | 210 | 240 | 270 | 300 | 330| 360|390 |400
AQL| % 00(54.3(239|10.3| 3.9] 22| .19| 05 .01| .01
8 i3.52|1.22| 34] .14| .00| .0t
INI
LTPD & 00 (13 .02] 031 .01
B, |8L.6|14.2} 3.1| 77| .10| .05| 01| .01
AQL ¢y |73.2116.8| .00(3.13| 39 23
B, [3.52] 98|1.40] .13| .03
NA
ITPD| @+ [435) 53| 00| .02
B: |81.6/11.5|1.91| .08
AQL| % 73.2|16.8|4.11 87| .24| .01} .01
B, [3.52] 98| 20| .06 .00| .01
NB
LTPD| @ |433] 53| 10| .00| .01
8, |81.6|115] 1.6 .21| .04]| .02
AQL a, 173.2(16.8| .00(3.13| &2| .02
B, |3.52] 98|1.40| .13] .00| 01
CA
LTPD o, |4.35| .53| .00| .02
8, 181.6/11.5]1.91 .08
AQL ap |73.2016.8| .00|32.13| 82| .02
B [3.52| 98}1.40| .13| 00| .01
Bl pp| @ [433] 53] 00| 02
B, |81.6/11.5]|1.91] .08

case(q=0.01), the gaps between @, and ¥, of the

INI plan are larger than those of the independent
case(q=0.00). But the gaps after applying the
search scheme are all 2, which is the smallest
allowable value for the test to be continued in order
to make the ASN as small as possible. In the

dependent case, the NA search selected smaller @,

and 7, than the other searches; the NB search sele-

cted larger ones; and the CA and CB searches
selected ones similar to each other. In the inde-
pendent case, however, all four searches selected
similar ones since the gap of the INI plan was noc
large enough.

<Table 3> shows the estimated « and 8, ASN,
AOQ without replacement of defectives, and ATI
for the sequential and multiple sampling plans
according to the search scheme when the stage size

# ate 1, 10 and 30. When stage size # is 1, the
multiple sampling plan becomes a sequential
sampling plan. Note that the estimated @ and g8 of
the four searches are more accurate than the original
sequential sampling plans.

The accuracy of o and g decreases as the stage
size » increases, because more stages are needed to
increase accuracy. In general, if the gap between the
two boundary lines is large, these error probabilities
can be reduced. If the gap is large, there s more
chance to narrow the gap, which means the
reduction of error probabilities. Note that, when »
is 1 and ¢ is 0.00, the ASN is smaller than the initial
sequential sampling plan. In this case, it is possible
to make more accurate and efficient sequential
sampling plans than Wald's SPRT plan by applying
the search scheme. In the independent case, the
ASN increases as the stage size # increases, but in
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Table 5. The acceptance and rejection probabilities in percent (#=30, ¢=0.01)

Stage £ | 1 | 2 | 3 | 4 5 6 7 8 |9 |10|11j{12]13] 14
kn 30 [ 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 |330| 360 | 390 | 400
ap| 00(623| 00| 1221 623 346| 2.07| 1.20| .79] .60 26 .20|1.98
AQL 44
Ay |5.1712.15| 25| .45 071 031 03| .02 .03 .00 00| 01
INI :
LTP | g, | 00| 79| 00| 06| 05| 09| 06| 05| .01| .01 o1 01| 00| 86
o .
Be|77.2|139(|254 207 | 60 ] 38| 45| 22| 25| .05 s .04 04| .03
AQL| % 767[121| 00| 00| 1.02| 261 08| .02
Br|5.17 164|190 95| 09| 02| .01 | .01
NA
LIP| 4, |6.46 ]| 1.51
D
Bp 7721114288 47| .03
AQL| @ 7671211394 .11 10 .01
Bri517| 164 13| 06| .01
NBILTP| 4, l6a46 (1511120 11| 11| 02| oo
D
Be|77.2]11.4|1.27| 56 .07 .03
AQL| % 7671212461 73| 32| 144 01 | 00 | .0t
Bels5.17|1.64| 42| .19 .08
CA
LTP| g, 1646|151 so| 11| 01| .02
D
Be|77.21114|218| 47| 06| .02 .01
AQL| 2 767 (121|246 73| 4% | 06
Bels17|164| 42| 19| .02
CBlrrp ap | 646|151 50| .11 .06
D
Bp 7721114218 47| 04| .00| 01 00 | o1

the dependent case, this is not always true. When
g is 0.01, the ASN of n is 1 is smaller than that of
n 15 10. In general, the ASN is affected by many
factors such as stage size, search schemes, depending
factors etc.

<Table 4> shows the acceptance probability «,
and rejection probability g, of the test at each stage
% according to the search scheme when # is 30 and
g is 0.00. The sum g,+ 3, is the probability that
the test will finish at stage 4.

<Table 5> is the same as Table 4 except 7 is

0.01. Most search schemes reduce the number of
test stages by assigning the largest probability to the
catlier stages. Especially, the first stage's «, of the
search schemes at AQL has larger value compared
to the INI plan, which enables reducing the test
stages.

6. Conclusion

In this paper, we have developed a design procedure
for nonstationary multiple sampling plans of a
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dependent process. By extending the multiple
sampling plans developed in this paper to the
sequential sampling plans, more accurate sequential
sampling plans can be acquired. In Polya dependent
processes, the distribution of the number of
defectives can be found by analytical method. So we
do not have to use simulation. But to verify the
algorithm developed in this paper, the results
coming from using simulation and analytical
methods are compared, and they show almost the
same results. The main advantage of this study is
that if the pattern of dependence of the process can
be found, then we can simulate the process, and can
establish optimal sampling plans.

One important point in multiple sampling plans
is to decide the optimal sample size. The stage size
is not given as a decision variable buz as a parameter.
The performance of 2 sampling plan varies according
to the stage size. The decision may depend on what
the objective function is. The type I and II error
probabilities are rather inaccurate when the srage
size becomes large. To solve this, we may consider
the variable stage size instead of a fixed stage size.
In a tradirional independent multiple sampling plan,
the number of stages is around seven and the stage
size is fixed. But in the dependent case, the number
of stages becomes larger than that of independent.

How to find the existence of dependency and
what the process model is are problems when
applying the multiple sampling procedure to the
real world. The study for the procedure of
identifying the process model and its parameters is
not addressed in this paper. However, this work
must be done before the actual applications. This
can be established by using some commercial
statistical package and by simulating the production
process. For further study, the sensitivity analysis for

the decision variables or parameters, and robustness
for sampling methods are required.
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