• Title/Summary/Keyword: Sequential Tracking

Search Result 101, Processing Time 0.025 seconds

Pulmonary Nodule Registration using Template Matching in Serial CT Scans (연속 CT 영상에서 템플릿 매칭을 이용한 폐결절 정합)

  • Jo, Hyun-Hee;Hong, He-Len
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.623-632
    • /
    • 2009
  • In this paper, we propose a pulmonary nodule registration for the tracking of lung nodules in sequential CT scans. Our method consists of following five steps. First, a translational mismatch is corrected by aligning the center of optimal bounding volumes including each segmented lung. Second, coronal maximum intensity projection(MIP) images including a rib structure which has the highest intensity region in baseline and follow-up CT series are generated. Third, rigid transformations are optimized by normalized average density differences between coronal MIP images. Forth, corresponding nodule candidates are defined by Euclidean distance measure after rigid registration. Finally, template matching is performed between the nodule template in baseline CT image and the search volume in follow-up CT image for the nodule matching. To evaluate the result of our method, we performed the visual inspection, accuracy and processing time. The experimental results show that nodules in serial CT scans can be rapidly and correctly registered by coronal MIP-based rigid registration and local template matching.

Development of a Data Reduction algorithm for Optical Wide Field Patrol

  • Park, Sun-Youp;Keum, Kang-Hoon;Lee, Seong-Whan;Jin, Ho;Park, Yung-Sik;Yim, Hong-Suh;Jo, Jung Hyun;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Jin;Choi, Young-Jun;Park, Jang-Hyun;Lee, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.193-206
    • /
    • 2013
  • The detector subsystem of the Optical Wide-field Patrol (OWL) network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS) solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

A Study on the Effect Analysis Influenced on the Advanced System of Moving Object (이동물체가 정밀 시스템에 미치는 영항분석에 관한 연구)

  • Shin, Hyeon-Jae;Kim, Soo-In;Choi, In-Ho;Shon, Young-Woo;An, Young-Hwan;Kim, Dae-Wook;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • In this paper, we analyzed the mr detection and the stability of the object tracking system by an adaptive stereo object hacking using region-based MAD(Mean Absolute Difference) algorithm and the modified PID(Proportional Integral Derivative)-based pan/tilt controller. That is, in the proposed system, the location coordinates of the target object in the right and left images are extracted from the sequential stereo input image by applying a region-based MAD algorithm and the configuration parameter of the stereo camera, and then these values could effectively control to pan/tilt of the stereo camera under the noisy circumstances through the modified PID controller. Accordingly, an adaptive control effect of a moving object can be analyzed through the advanced system with the proposed 3D robot vision, in which the possibility of real-time implementation of the robot vision system is also confirmed.

Three-Dimensional Digital Subtraction Angiography (디지털 혈관 조영술 영상의 3차원적 해석)

  • 이승지;김희찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 1983
  • A dye-edge tracking algorithm was used to determine the corresponding points in the two images(anterior-posterior and lateral) of the digital subtraction biplane angiography. This correspondence was used to reconstruct three dimensional images of cerebral artery in a dog experiment. The method was tested by comparing the measured image of oblique view with the computed reconstructed image. For the present study, we have developed three new algorithms. The first algorithm is to determine the corresponding dye-edge points using the fact the dye density at the moving edge avows the same changing pattern in the two projection views. This moving pattern of dye-edge density is computed using a matching method of cross-correlation for the two sequential frames' dye density. The second algorithm is for simplified perspective transformation, and the third one is to identify the specific corresponding points on the small vessels. The present method can be applied to compute the blood velocity using the dye-edge displacement and the three- dimensional distance data.

  • PDF

A Study on Mixed RP/SP Models of Demand Forecasting for Rail Rapid Transit (급행철도 수요예측을 위한 RP와 SP 결합모형에 관한 연구)

  • Bae, Choon Bong;Jung, Byung Doo;Hwang, Young Ki;Kim, Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.671-677
    • /
    • 2011
  • A diversity of railway network function enhancement projects such as the double tracking, electrification, and direct operation have been actively executed to improve the railway service. When the new rapid transit is provided, how many people will use it instead of other transports? How will the railway choice behavior be changed? Accordingly, in this paper, the applicability of diverted travel demand forecast methods, by Revealed Preference(RP) and Stated Preference(SP) data was reviewed for Daegu metropolitan rail rapid transit service. As the result of combining RP and SP data, including the sequential and simultaneous approach, the total travel time and travel cost parameters are of the right sign and are highly significant. The simultaneous approach is more efficient in terms of the estimation of coefficients. In particular, methods to improve validity of the Mixed RP/SP models, when RP data is used proportionally, the diverted travel demand can be easily identified by railway fare and travel time service level. Therefore, it is considered that this will practically apply even in other regions as well as Daegu metropolitan railway.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

A Study on Fast Matching of Binary Feature Descriptors through Sequential Analysis of Partial Hamming Distances (부분 해밍 거리의 순차적 분석을 통한 이진 특징 기술자의 고속 정합에 관한 연구)

  • Park, Hanhoon;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.217-221
    • /
    • 2013
  • Recently, researches for methods of generating binary feature descriptors have been actively done. Since matching of binary feature descriptors uses Hamming distance which is based on bit operations, it is much more efficient than that of previous general feature descriptors which uses Euclidean distance based on real number operations. However, since increase in the number of features linearly drops matching speed, in applications such as object tracking where real-time applicability is a must, there has been an increasing demand for methods of further improving the matching speed of binary feature descriptors. In this regard, this paper proposes a method that improves the matching speed greatly while maintaining the matching accuracy by splitting high dimensional binary feature descriptors to several low dimensional ones and sequentially analyzing their partial Hamming distances. To evaluate the efficiency of the proposed method, experiments of comparison with previous matching methods are conducted. In addition, this paper discusses schemes of generating binary feature descriptors for maximizing the performance of the proposed method. Based on the analysis on the performance of several generation schemes, we try to find out the most effective scheme.

Sequential Registration of the Face Recognition candidate using SKL Algorithm (SKL 알고리즘을 이용한 얼굴인식 후보의 점진적 등록)

  • Han, Hag-Yong;Lee, Sung-Mok;Kwak, Boo-Dong;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.320-325
    • /
    • 2010
  • This paper is about the method and procedure to register the candidate sequentially in the face recognition system using the PCA(Principal Components Analysis). We use the method to update the principal components sequentially with the SKL algorithm which is improved R-SVD algorithm. This algorithm enable us to solve the re-training problem of the increase the candidates number sequentially in the face recognition using the PCA. Also this algorithm can use in robust tracking system with the bright change based to the principal components. This paper proposes the procedure in the face recognition system which sequentially updates the principal components using the SKL algorithm. Then we compared the face recognition performance with the batch procedure for calculating the principal components using the standard KL algorithm and confirms the effects of the forgetting factor in the SKL algorithm experimentally.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Parameter Calibration of Car Following Models Using DGPS DATA (DGPS 수신장치를 활용한 차량추종 모형 파라미터 정산)

  • Kim, Eun-Yeong;Lee, Cheong-Won;Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.17-27
    • /
    • 2006
  • Car following model is a theory that examines changes of condition and interrelationship of acceleration deceleration. headway, velocity and so on closely based on the hypothesis that the Posterior vehicle always follows the preceding vehicle. Car following mode) which is one of the research fields of microscopic traffic flow was first introduced in 1950s and was in active progress in 1960s. However, due to the limitation of data gathering the research depression was prominent for quite a while and then soon was able to tune back on track with development in global positioning system using satellite and generalization of computer use. Recently, there has been many research studies using reception materials of global Positioning system(GPS). Introducing GPS technology to traffic has made real time tracking of a vehicle position possible. Position information is sequential in terms of time and simultaneous measurement of several vehicles in continuous driving is also practicable. Above research was focused on judging whether it is feasible to overcome the following model research by adopting the GPS reception device that was restrictively proceeded due to the limitation of data gathering. For practical judgment, we measured the accuracy and confidence level of the GPS reception devices material by carrying out a practical experiment. Car following model is also being applied in simulations of traffic flow analysis, but due to the difficulty of estimating parameters the basis of the above result. it is our goal to produce an accurate calibration of car following model's parameters that is suitable in this domestic actuality.