Browse > Article
http://dx.doi.org/10.5140/JASS.2015.32.3.229

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data  

Son, Ju Young (Korea University of Science and Technology)
Jo, Jung Hyun (Korea University of Science and Technology)
Choi, Jin (Korea University of Science and Technology)
Kim, Bang-Yeop (Korea Aerospace Research Institute)
Yoon, Joh-Na (Chungbuk National University Observatory)
Yim, Hong-Suh (Korea Astronomy and Space Science Institute)
Choi, Young-Jun (Korea Astronomy and Space Science Institute)
Park, Sun-Youp (Korea Astronomy and Space Science Institute)
Bae, Young Ho (Korea Astronomy and Space Science Institute)
Roh, Dong-Goo (Korea Astronomy and Space Science Institute)
Park, Jang-Hyun (Korea Astronomy and Space Science Institute)
Kim, Ji-Hye (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.32, no.3, 2015 , pp. 229-235 More about this Journal
Abstract
We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.
Keywords
satellite orbit estimation; satellite optical observation; simulation; actual observation data;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Calabretta MR, Greisen EW, Representations of celestial coordinates in FITS, Astron. Astrophys. 395, 1077-1122 (2002). http://dx.doi.org/10.1051/0004-6361:20021327   DOI
2 Choi J, Kim BY, Yim HS, Chang HY, Yoon JN, et al., Orbit determination using angle-only data for MEO & GEO satellite and obsolete, J. Astron. Space Sci. 26, 111-126 (2009). http://dx.doi.org/10.5140/JASS.2009.26.1.111   DOI
3 Choi J, Jo JH, Choi YJ, Cho GI, Kim JH, et al., A study on the strategies of the positioning of a satellite on observed images by the astronomical telescope and the observation and initial orbit determination of unidentified space object, J. Astron. Space Sci. 28, 333-344 (2011) http://dx.doi.org/10.5140/JASS.2011.28.4.333.   DOI
4 Greisen EW, Calabretta MR, Representations of world coordinates in FITS, Astron. Astrophys. 395, 1061-1075 (2002). http://dx.doi.org/10.1051/0004-6361:20021326   DOI
5 Hajiyev C, Ata M, Error analysis of orbit determination for the geostationary satellite with single station antenna tracking data, Positioning 2, 135-144 (2011). http://dx.doi.org/10.4236/pos.2011.24013   DOI
6 Historical TLE search, Space-Track [Internet], cited 2015 March 18, available from: http://www.space-track.org/#/tle.
7 Hwang Y, Lee BS, Kim HY, Kim H, Kim J, Orbit determination accuracy improvement for geostationary satellite with single station antenna tracking data, ETRI Journal 30, 774-782 (2008). http://dx.doi.org/10.4218/etrij.08.0108.0152   DOI
8 Lasker BM, Sturch CR, McLean BJ, Russel JL, Jenkner H, et al., The Guide Star Catalog. I. Astronomical foundations and image processing, Astron. J. 99, 2019-2178 (1990). http://dx.doi.org/10.1086/115483   DOI
9 Lee SC, Roh TS, Suck JY, A simulation study of orbit determination using the optimal sequential filter for selecting GEOKOMPSAT ground station, Korean Soc. Aeronauti. Space Sci. 11, 547-552 (2011).
10 Lee WK, Lim HC, Park PH, Youn JH, Yim H-S, et al., Orbit determination of GPS and Koreasat 2 satellite using angleonly data and requirements for optical tracking system, J. Astron. Space Sci. 21, 221-232 (2004). http://dx.doi.org/10.5140/JASS.2004.21.3.221   DOI
11 Park SY, Keum KH, Lee SW, Jin H, Park YS, et al., Development of a data reduction algorithm for optical wide field patrol, J. Astron. Space Sci. 30, 193-206 (2012). http://dx.doi.org/10.5140/JASS.2013.30.3.193   DOI
12 Russel JL, Lasker BM, McLean BJ, Sturch CR, Jenkner H, The Guide Star Catalog. II. Photometric and astrometric models and solutions, Astron. J. 99, 2059-2081 (1990). http://dx.doi.org/10.1086/115484   DOI
13 Son JY, Jo JH, Choi J, Optical orbit determination of a geosynchronous Earth orbit satellite effected by the baseline differences between various ground-based tracking stations I: COMS simulation case, J. Astron. Space Sci. 32, 221-228 (2015). http://dx.doi.org/10.5140/JASS.2015.32.3.221   DOI
14 Valdes F, The interactive data reduction and analysis facility (IRAF), Bull. Am. Astron. Soc. 16, 497 (1984).
15 Vallado DA, Fundamentals of Astrodynamics and Applications (Microcosm Press, California, 2004), 151-163.