• 제목/요약/키워드: Sequential Learning Method

검색결과 95건 처리시간 0.024초

향상된 실내 이동 경로 생성을 위한 인접 클러스터의 정보 확장에 관한 연구 (A Study on Information Expansion of Neighboring Clusters for Creating Enhanced Indoor Movement Paths)

  • 윤창표;황치곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.264-266
    • /
    • 2022
  • 전파 지문 기반의 실내 경로 생성 기술에 RNN 모델을 적용하기 위해서는 데이터 세트가 연속적이고 순차적이어야 한다. 그러나 Wi-Fi 전파 지문 데이터는 수집 시점의 특정 위치에 대한 특징 정보로서 연속성이 보장되지 않기 때문에 RNN 데이터로는 부적합하다. 따라서 순차적 위치의 연속성 정보를 부여해야한다. 이를 위해서는 신호 데이터를 기반으로 각 지역의 구분을 통해 클러스터링이 가능하다. 이때 클러스터 간의 연속성 정보에는 전파 신호의 한계로 이해 실제 이동이 가능한지의 정보를 담지 못한다. 따라서 인접 클러스터간의 이동이 가능한지에 대한 연관성 정보가 필요하다. 본 논문에서는 딥러닝 네트워크인 순환신경망(RNN) 모델을 사용해 이동 중인 객체의 경로 예측을 위한 기술로서 실내 환경에서 경로 생성을 위해 연속적인 위치 정보를 생성하여 객체의 경로 예측 시 발생할 수 있는 오류를 낮추고 예측 경로상의 이동이 불가능한 잘못된 경로 예측을 회피할 수 있는 향상된 이동 경로 생성을 위한 클러스터링 상호간의 연관성을 부여하는 기법을 제안한다.

  • PDF

간호대학생의 Virtual 시뮬레이션 실습 및 High fidelity 시뮬레이션 실습교육 경험 분석: 혼합연구방법 적용 (Analysis of the virtual simulation practice and high fidelity simulation practice training experience of nursing students: A mixed-methods study)

  • 이은혜;류소영
    • 한국간호교육학회지
    • /
    • 제27권3호
    • /
    • pp.227-239
    • /
    • 2021
  • Purpose: This study used an exploratory sequential approach (mixed methods) design to explore essential meaning through comparing and analyzing the experiences of nursing students in virtual simulation practice and high fidelity simulation practice education in parallel. Methods: The study participants were 20 nursing students, and data were collected through focus group meetings from July 17 to August 5, 2020, and via online quantitative data from November 10 to November 15, 2020. The qualitative data were analyzed using Giorgi's phenomenological method, and the quantitative data were analyzed using descriptive statistics, the Mann-Whitney U test, Kruskal-Wallis H test analysis of variance and Spearman's ρ correlation. Results: The comparison between the two simulation training experiences was shown in five contextual structures, as follows: (1) reflection of the clinical field, (2) thinking theorem vs. thinking expansion, (3) individual-centered learning vs. team-centered learning, (4) attitudes toward participating in practical training, (5) metacognition of personal competency as a prospective nurse, and (6) revisiting the method of practice training. There was a positive correlation between satisfaction with the practice and the clinical judgment ability of high fidelity simulation, which was statistically significant (r=.47, p=.036). Conclusion: Comparing the experiences between virtual simulation practice training and high fidelity simulation practice training, which has increased in demand due to the Coronavirus Disease-2019 pandemic, is meaningful as it provides practical data for introspection and reflection on in-campus clinical education.

피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측 (Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection)

  • 석호식
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.494-499
    • /
    • 2022
  • 본 논문에서는 인간의 피부섬유모세포(Human dermal fibroblasts)로부터 확보한 전사체 정보를 활용하여 나이를 예측하는 방법을 소개한다. 제안 방법에서는 훈련을 통해 확보한 분류기 및 회귀 모델을 이용하여 샘플이 속한 적합한 연령 그룹을 선택한 후, 선택된 연령 그룹에 속하는 훈련 데이터의 관측값을 활용하여 구체적인 연령을 예측한다. 연령을 예측하려는 샘플이 입력되면 복수 개의 판별 규칙이 순서대로 실행되는데, 개별 판별 규칙에서는 분류기와 회귀 모델을 동시에 실행하여 해당 판별 규칙에 대한 선택조건이 만족되는지 여부를 확인한다. 선택 조건이 만족될 경우 판별 규칙의 타겟 연령 그룹에 속하는 데이터를 이용하여 훈련된 회귀 모델로 연령을 예측하며, 선택 조건이 만족되지 않으면 후속 판별 규칙을 실행한다. 공개 데이터에 대하여 실험한 결과 기존 연구에서 달성한 7.7년의 평균 예측 오차보다 우수한 5.7년이라는 평균 예측 오차를 달성함을 확인하였다.

히스테리시스 특성이 계열연상에 미치는 영향에 대한 통계 신경역학적 해석 (Analysis of Statistical Neurodynamics for the Effests of the Hysteretic Property on the Performance of Sequential Associative Neural Nets)

  • 김응수;오춘석
    • 한국정보처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.1035-1045
    • /
    • 1997
  • 신경회로망의 동작과 정보처리 능력 등에 관하여 살펴보고자 할 때, 신경회로망의 구성 요소를 어떻게 모델화 할 것인가를 중요한 문제이다. 소자의 응답특성이 바뀜에 따른 특성의 변화, 결합강도 및 적용규칙이 바뀜 으로써 회로망 전체의 다이나믹스가 바 뀌는 모습, 소자 상호간의 결합 형태에 따른 정보처리 능력의 변화등과 같은 신경회로 망이 가진 다양한 정보처리 능력을 밝히는 것은 병렬 정보처리의 메카니즘을 이해하는 문제와도 일맥 상통하고 있다. 따라서 이러한 문제에 대하여 신경회로망의 정보처리 능력을 해석 적으로 평가하는 것은 병렬분산 정보처리의 본질을 밝힌다는 측면과 지적 정보처리 시스템의 구측을 목표로 연구되고 있는 신경회로망의 본질을 이해한다는 측면에서도 중요하게 여겨진다. 따라서 본 논문에서는 신경회로망을 구성하는 구성요 소의 변화, 그 가운데에서도 특히 소자의 히스테리시스 특성이 신경망의 계열연상 능력에 따라 미치는 영향에 대한 이론적 해석결과에 대하여 기술한다.

  • PDF

Human Action Recognition Based on 3D Convolutional Neural Network from Hybrid Feature

  • Wu, Tingting;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1457-1465
    • /
    • 2019
  • 3D convolution is to stack multiple consecutive frames to form a cube, and then apply the 3D convolution kernel in the cube. In this structure, each feature map of the convolutional layer is connected to multiple adjacent sequential frames in the previous layer, thus capturing the motion information. However, due to the changes of pedestrian posture, motion and position, the convolution at the same place is inappropriate, and when the 3D convolution kernel is convoluted in the time domain, only time domain features of three consecutive frames can be extracted, which is not a good enough to get action information. This paper proposes an action recognition method based on feature fusion of 3D convolutional neural network. Based on the VGG16 network model, sending a pre-acquired optical flow image for learning, then get the time domain features, and then the feature of the time domain is extracted from the features extracted by the 3D convolutional neural network. Finally, the behavior classification is done by the SVM classifier.

증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계 (Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model)

  • 박상범;이승철;오성권
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

시스템 요구사항 분석을 위한 순환적-점진적 복합 분석방법 (An Integrated Method of Iterative and Incremental Requirement Analysis for Large-Scale Systems)

  • 박지성;이재호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권4호
    • /
    • pp.193-202
    • /
    • 2017
  • 인공지능 기반 지능형 시스템의 개발에는 일반적으로 신뢰성 높은 대규모 지식처리, 지식의 통합과 인간 수준의 이해, 지식기반 인간-기계협업, 전문가 수준의 지능 서비스 등의 효과적 통합이 요구된다. 특히 빅데이터 이해 기반 자가학습형 지식베이스 및 추론 기술 개발을 목표로 하고 있는 과제의 일환으로 개발 중인 WiseKB 통합 플랫폼은 대용량 지식을 저장하여 추론과정을 통한 질의 및 응답이 가능한 대규모 지식 베이스 역할을 수행하며 이를 위하여 지식표현, 자원통합, 지식저장소, 지식베이스, 복합추론, 지식학습 등의 요소기술들의 효과적 통합이 필수적이다. 통합 플랫폼의 효율적 통합을 위해서는 정확한 요구사항 분석이 중요하며, 이는 시스템의 특성을 고려한 적절한 요구사항 분석 방법론의 적용이 필요하다. 대표적인 요구사항 분석 방법인 순차적 방법론과 순환-점진적 방법론은 WiseKB와 같은 시스템의 대규모 복합적 개발 특성을 고려할 때 다양한 요구사항을 체계적으로 파악하기에 한계가 있다. 본 논문에서는 이러한 한계를 개선하고자 순차적 방법과 순환-점진적 방법론을 결합해 각 단점을 보완하고 대규모 복합적 특성을 갖는 시스템의 요구사항 분석을 효율적으로 진행할 수 있는 통합 방법론을 제시하고, 실제 적용을 통해 그 효과를 보인다.

이진 삼차 재귀 신경망과 유전자 알고리즘을 이용한 문맥-자유 문법의 추론 (Inference of Context-Free Grammars using Binary Third-order Recurrent Neural Networks with Genetic Algorithm)

  • 정순호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.11-25
    • /
    • 2012
  • 이 논문은 이진 삼차 재귀 신경망(Binary Third-order Recurrent Neural Networks: BTRNN)에 유전자 알고리즘을 적용하여 문맥-자유 문법을 추론하는 방법을 제안한다. BTRNN은 각 입력심볼에 대응되는 재귀 신경망들의 다층적 구조이고 외부의 스택과 결합된다. BTRNN의 매개변수들은 모두 이진수로 표현되며 상태 전이와 동시에 스택의 한 동작이 실행된다. 염색체로 표현된 BTRNN들에 유전자 알고리즘을 적용하여 긍정과 부정의 입력 패턴들의 문맥-자유 문법을 추론하는 최적의 BTRNN를 얻는다. 이 방법은 기존의 신경망 이용방법보다 적은 학습량과 적은 학습회수로 작거나 같은 상태 수를 갖는 BTRNN을 추론한다. 또한 문법 표현의 염색체 이용방법보다 parsing과정에서 결정적인 상태전이와 스택동작이 실행되므로 입력 패턴에 대한 인식처리 시간복잡도가 우수하다. 문맥-자유 문법의 비단말 심볼의 개수 p, 단말 심볼의 개수 q, 그리고 길이가 k인 문자열이 입력이 될 때, BTRNN의 최대 상태수가 m이라고 하면, BTRNN의 인식처리 병렬처리 시간은 O(k)이고 순차처리 시간은 O(km)이다.

학습장애를 가진 아동에 대한 K-ABC와 K-LDES의 진단적 타당도 (DIAGNOSTIC VALIDITY OF THE K-ABC AND THE K-LDES FOR CHILDREN WITH LEARNING DISORDER AND LEARNING PROBLEM)

  • 신민섭;조수철;김붕년;전선영
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제14권2호
    • /
    • pp.209-217
    • /
    • 2003
  • 목 적:본 연구에서는 K-ABC와 K-LDES가 학습장애나 학습문제를 보이는 아동들의 인지적 결함과 학습문제를 평가하고 학습장애를 진단하는데 있어 얼마나 타당하고 유용한지를 알아보았다. 방 법:서울대학교병원 소아정신과에 내원하여 소아정신과 의사와 임상심리전문가에 의해 LD 혹은 학습문제를 수반한 ADHD로 진단 받은 아동 15명(LP 집단), ADHD로 진단 받은 아동 14명과 서울에 위치하는 공립, 사립 초등학교 2개교에 재학 중인 초등학생 15명이 정상집단으로 참여하였다(연령 범위:만 $7{\sim}12$세). 각 아동에게 1대 1로 K-ABC가 실시되었으며, 모가 직접 각 아동들에 대해서 K-LDES를 평정하였다. 결 과:K-ABC의 순차처리, 동시처리, 인지처리과정척도에서 세 집단간의 유의미한 차이를 보이지 않았다. 그러나 습득도척도에서 통계적으로 유의미하지는 않으나, LP 집단이 ADHD 집단과 정상집단에 비해 경미한 수준에서 낮은 점수를 보였다. 문장해독에서는 LP 집단이 ADHD 집단과 정상집단에 비해 유의미하게 낮은 수행을 보였다. K-LDES에서는 LP 집단이 말하기와 수학을 제외한 모든 하위척도들에서 다른 두 집단에 비해 매우 유의미하게 낮은 수행을 보였다. 또한 K-ABC의 척도들과 K-LDES의 척도들간의 유의미한 상관을 보였다. 결 론:본 연구는 K-ABC와 K-LDES가 학습장애를 평가하고 진단하는데 있어 유용하고 타당한 검사 도구임을 보였다. 그러나 LD에만 특징적인 인지적 결함을 밝히지는 못하였는데, 이는 LD의 피험자 수가 적고 ADHD와의 공존병리가 높은 점과 관련되어 있는 것으로 생각된다. 따라서 K-ABC만을 가지고 LD와 ADHD를 구분하는데는 어려움이 많기 때문에, K-LDES를 같이 사용하는 것이 진단의 정확성을 높일 수 있을 것으로 생각된다.

  • PDF

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.