• Title/Summary/Keyword: Separators

Search Result 150, Processing Time 0.023 seconds

Processes of Outflow of the Boiling Steam-Water Mixture in the Widening Part of Hydro-Steam Turbine Nozzles

  • Leonid, Serejkin;Boris, Shifrin;Victor, Perov;Alexandr, Goldin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.178-184
    • /
    • 2022
  • Renewable energy sources based on solar radiation, wind energy, geothermal energy, and biomass energy have now reached the level of industrial application. A new way to generate electricity using low-potential heat is to install a hydro-steam turbine. In hydro-steam turbines, hot water is supplied directly to turbine rotor nozzles without prior separation into steam and water in separators, which significantly increases the efficiency of hot water energy use. Such turbines are suggested to be used as autonomous energy sources in geothermal heating systems, heating water boilers and cooling systems of chemical reactors, metallurgical furnaces, etc. The authors conclude that the installation of hydro-steam turbines in heating plants and process boiler plants can also be effective if the used exhaust steam-water mixture at the turbine outlet is used to heat the network water or as return water.

Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications (수소 분리 응용을 위한 폴리벤즈이미다졸 기반 분리막의 연구 동향)

  • Kim, Ji Hyeon;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.453-466
    • /
    • 2020
  • As the demand for eco-friendly energy increases to overcome the energy shortage and environmental pollution crisis, hydrogen economy has been proposed as a potential solution. Accordingly, an economical and efficient hydrogen production is considered to be an essential industrial process. Research on applying hydrogen separation membranes for H2/CO2 separation to the production of highly concentrated hydrogen by purifying H2 and capturing CO2 simultaneously from synthetic gas produced by gasification is in progress nowadays. In high temperature environments, the membrane separation process using glassy polymeric membrane with H2 selectivity has the potential for CO2 capture performance, and is an energy and cost effective system since polybenzimicazole (PBI)-based separators show excellent chemical and mechanical stability under high-temperature operation conditions. Thus, the development of high-performance PBI hydrogen separators has been rapidly progressing in recent years. This overview focuses on the recent developments of PBI-based membranes including structure modified, cross-linked, blended and carbonized membranes for applications to the industrial hydrogen separation process.

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).

Separators far Li-Ion Secondary Batteries (리튬이온 2차전지용 분리막)

  • Nam Sang Yong;Lee Young Moo;Lee Chang Hyun;Park Ho Bum;Rhim Ji Won;Ha Seong Yong;Kang Jong Seok
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • The polymeric membrane, a component of battery devices such as Li-ion battery (LIB) and Li-polymer battery (LPB), is a typical material in which the carrier mobility dominates the battery performance. In this paper, the state-of-the-art of membranes for secondary battery is described in terms of membrane properties. Several prerequisites, which are related to stability of battery devices, are discussed to design and prepare suitable polymeric membranes. In addition, physical requirements of membranes and their measurement methods are described to develop applicable polymeric membranes in membrane preparation processes.

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

An Application of Electrical Resistance Method for Monitoring of Rotating Cylindrical Separator (원통형 회전 분리기를 감시하기 위한 전기저항법의 이용)

  • Lee, Bo-An;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • In order to monitor a rotating cylindrical separator for radioactive waste, an electrical resistance method is proposed and its mathematical model is investigated. In a rotating radioactive waste separator, the electrical resistance between a pair of electrodes mounted on the inner wall of the vessel is related to the thickness of annular region of insoluble particle formed around the periphery and the concentration of the insoluble particle in that region. This work presents an analytical relationship among the aforementioned parameters based on a two-dimensional solution to the electrical potential equation and an empirical conductivity-concentration relation. Also, the feasibility of electrical resistance method for monitoring rotating cylindrical separators is discussed.

Fabrication of PVDF Structures by Near Field Electrospinning

  • Kim, Seong-Uk;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.423.1-423.1
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) has drawn much attention due to its many advantages. PVDF shows high mechanical strength and flexibility, thermal stability, and good piezoelectricity enabling its application to various fields such as sensors, actuators, and energy transducers. Further studies have been conducted on PVDF in the form of thin films. The thin films exhibit different ionic conductivity according to the number of pores within the film, letting these films to be applied as electrolytes or separators of batteries. Porous PVDF membranes are also easily processed, usually made by using electrospinning. However, a large portion of researches were conducted using PVDF membranes produced by far field electrospinning, which is not a well-controlled experimental method. In this paper, we use near field electrospinning (NFES) process for more controlled, small-scaled, mesh type PVDF structures of nano to micro fibers fabricated by controlling process parameters and investigate the properties of such membranous structures. These membranes vary according to geometrical shape, pore density, and fiber thickness. We then measured the mechanical strength and piezoelectric characteristic of the structures. With various geometries in the fiber structures and various scales in the fibers, these types of structures can potentially lead to broader applications for stretchable electronics and dielectric electro active polymers.

  • PDF

The Holding Characteristics of the Glass Filter Separators of Molten Salt Electrolyte for Thermal Batteries (열전지용 용융염 전해질의 유리필터분리판의 담지특성)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Huh, Seung-Hun;Shin, Dong-Geun;Kim, Hyoun-Ee;Cheong, Hae-Won;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.464-471
    • /
    • 2008
  • The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten salt. Ceramic fibers, especially fibrous commercial glass filters were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. During the infiltration, ions of $Li^+$ and $F^-$ in the molten salts were reacted with the glass fiber and caused to be weaken the fiber strength.

Structural Design and Manufacturing of Corrugated Plate for Plate-Type Heat Exchanger (연속 주름구조를 가진 전열판의 기계적 건전성 확보를 위한 형상 설계 및 제작)

  • Yu, Jae Hyun;Bae, Won Byong;Park, Sang Hu;Cho, Jong Rae;Jeong, Ho Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.199-205
    • /
    • 2016
  • A thin sheet of metal with corrugated structures has been utilized in various devices: heat exchangers, separators in fuel cells, and many others. However, it is not easy to fabricate thin corrugated structures using a single-step stamping process due to their geometrical complexity. To solve this problem, firstly, a plate type heat exchanger was redesigned to attain the optimal value of aspect ratio and the optimal shape of corrugated structures for the actual loading conditions. A forming analysis of the corrugated plate was then carried out to determine the process parameters. From this work, the optimal value of aspect ratio was found to be 4.6. In addition, the process parameters of heat exchanger forming were optimized using the optimal value of aspect ratio, and the analytical results were evaluated through experiments. The results obtained indicated good agreements between them.