Browse > Article
http://dx.doi.org/10.14478/ace.2020.1054

Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications  

Kim, Ji Hyeon (Department of Materials Engineering and Convergenece Technology, Engineering Research Institute, Gyeongsang National University)
Kim, Kihyun (Department of Materials Engineering and Convergenece Technology, Engineering Research Institute, Gyeongsang National University)
Nam, Sang Yong (Department of Materials Engineering and Convergenece Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 453-466 More about this Journal
Abstract
As the demand for eco-friendly energy increases to overcome the energy shortage and environmental pollution crisis, hydrogen economy has been proposed as a potential solution. Accordingly, an economical and efficient hydrogen production is considered to be an essential industrial process. Research on applying hydrogen separation membranes for H2/CO2 separation to the production of highly concentrated hydrogen by purifying H2 and capturing CO2 simultaneously from synthetic gas produced by gasification is in progress nowadays. In high temperature environments, the membrane separation process using glassy polymeric membrane with H2 selectivity has the potential for CO2 capture performance, and is an energy and cost effective system since polybenzimicazole (PBI)-based separators show excellent chemical and mechanical stability under high-temperature operation conditions. Thus, the development of high-performance PBI hydrogen separators has been rapidly progressing in recent years. This overview focuses on the recent developments of PBI-based membranes including structure modified, cross-linked, blended and carbonized membranes for applications to the industrial hydrogen separation process.
Keywords
Cross-linked PBI; Hydrogen separation membrane; High temperature gas separation; Polybenzimidazole; PBI membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Berchtold, R. Singh, J. Young, and K. Dudect, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012).   DOI
2 T. Merkel, M. Zhou, and R. Baker, Carbon dioxide capture with membranes at an IGCC power plant, J. Membr. Sci., 389, 441-450 (2012).   DOI
3 S. H. Han, J. E. Lee, K. H. Lee, H. B. Park, and Y. M. Lee, Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement, J. Membr. Sci., 357, 143-151 (2010).   DOI
4 K. Wang, Q. Yang, T. Chung, and R. Rajagopalan, Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall, Chem. Eng. Sci., 64, 1577-1584 (2009).   DOI
5 E. Strauss, Strength of polybenzimidazole and phenolic laminate- to-metal joints, Polym. Eng. Sci., 6, 24-29 (1966).   DOI
6 H. Lin, E. Wagner, B. Freemane, L. Toy, and R. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science, 311, 639-642 (2006).   DOI
7 I. Valtcheva, P. Marchetti, and A. Livingston, Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters, J. Membr. Sci., 493, 568-579 (2015).   DOI
8 J. Mchattie, W. Koros, and D. Paul, Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups, Polymer, 32, 2618-2625 (1991).   DOI
9 N. Jusoh, Y. Yeong, K. Lau, and A. Shzriff, Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties, Procedia. Eng., 148, 1259-1265 (2016).   DOI
10 B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999).   DOI
11 A. Naderi, A. Tashvigh, and T. Chung, $H_2/CO_2$ separation enhancement via chemical modification of polybenzimidazole nanostructure, J. Membr. Sci., 572, 343-349 (2019).   DOI
12 P. Li, Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, and S. Wang, Recent developments in membranes for efficient hydrogen purification, J. Membr. Sci., 495, 130-168 (2015).   DOI
13 D. D'Alessandro, B. Smit, and J. Long, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082 (2010).   DOI
14 B. Low, Y. Xizo, T. Chung, and Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on $H_2/CO_2$ separation, Macromolecules, 41, 1297-1309 (2008).   DOI
15 L. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165-185 (1991).   DOI
16 X. Li, R. Singh, K. Dudeck, and K. Berchtold, Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014).   DOI
17 H. Kita, Materials Scienece of Membranes for Gas and Vapor Separation, Y. Yampolskii, I. Pinnau and B. D. Freeman, 337-354, John Wiley & Sons (2006).
18 J. Wijmans and R. Baker, The solution-diffusion model: A review, J. Membr. Sci., 107, 1-21 (1995).   DOI
19 S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. Guiver, Advances in high permeability polymer-based membrane materials for $CO_2$ separations, Energy. Environ. Sci., 9, 1863-1890 (2016).   DOI
20 T. Ward and T. Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci., 153, 211-213 (1999).   DOI
21 Z. Tao, L. Yan, J. Qjao, B. Wang, L. Zhang, and J. Zhang, A review of advanced proton-conducting materials for hydrogen separation, Prog. Mater. Sci., 74, 1-50 (2015).   DOI
22 K. Berchtold, R. Singh, J. Young, and K. Dudeck, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012).   DOI
23 J. Lobato, P. Canizares, M. Rodrigo, J. Linares, and J. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, J. Membr. Sci., 306, 47-55 (2007).   DOI
24 S. K. Kim, K. H. Kim, J. O. Park, K. Kim, T. Ko, S. W. Choi, C. Pak, H. Chang, and J. C. Lee, Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole), J. Power Sources, 226, 346-353 (2013).   DOI
25 I. Valtcheva, S. Kumbharkar, J. Kim, and Y. Bhole, Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci., 457, 62-72 (2014).   DOI
26 S. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for $H_2/CO_2$ separation, J. Membr. Sci., 375, 231-240 (2011).   DOI
27 D. Pesiri, B. Jorgensen, and R. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide, J. Membr. Sci., 218, 11-18 (2003).   DOI
28 A. L. Gulledge, Advancements in the design, Synthesis, and Application of Polybenzimidazoles, PhD Dissertation, University of South Carolina, Clumbia (2014).
29 M. Geormezi, V. Deimede, N. Gourdoupi, N. Triantafyllopoulos, S. Neophytides, and J. K. Kallitsis, Novel pyridine-based poly (ether sulfones) and their study in high temperature PEM fuel cells, Macromolecules, 41, 9051-9056 (2008).   DOI
30 H. Lin, Integrated membrane material and process development for gas separation, Curr. Opin. Chem. Eng., 4, 54-61 (2014).   DOI
31 S. Hosseini and T. Chung, Carbon membranes from blends of PBI and polyimides for $N_2/CH_4$ and $CO_2/CH_4$ separation and hydrogen purification, J. Membr. Sci., 328, 174-185 (2009).   DOI
32 H. B. Park, C. H. Jung, Y. M. Lee, A. Hill, S. Pas, S. Mudie, E. Wagner, B. Freeman, and D. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254-257 (2007).   DOI
33 M. Omidvar, H. Nguyen, L. Huang, C. Doherty, A. Hill, C. Stafford, X. Feng, M. Swihart, and H. Lin, Polybenzimidazole-derived carbon molecular sieve membranes with "Hourglass" nanostructures achieving $H_2/CO_2$ separation properties above upper bounds, J. Chem. Inf. Model., 53, 1-19 (2019).   DOI
34 M. Rungta, G. Wenz, C. Zhang, L. Xu, W. Qiu, and J. Adams, Carbon molecular sieve structure development and membrane performance relationships, Carbon, 115, 237-248 (2017).   DOI
35 Y. Wang, S. H. Goh, and T. Chung, Miscibility study of $Torlon^{(R)}$ polyamide-imide with $Matrimid^{(R)}$ 5218 polyimide and polybenzimidazole, Polymer, 48, 2901-2909 (2007).   DOI
36 A. Naderi, A. Tashvigh, T. Chung, M. Weber, and C. Maletzko, Molecular design of double crosslinked sulfonated polyphenylsulfone /polybenzimidazole blend membranes for an efficient hydrogen purification, J. Membr. Sci., 563, 726-733 (2018).   DOI
37 A. Naderi, T. Chung, M. Weber, and C. Maletzko, High performance dual-layer hollow fiber membrane of sulfonated polyphenylsulfone/ polybenzimidazole for hydrogen purification, J. Membr. Sci., 591, 117292 (2019).   DOI
38 L. Zhu, M. Swihart, and H. Lin, Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane $H_2/CO_2$ separation, J. Mater. Chem. A, 5, 19914-19923 (2017).   DOI
39 O. David, D. Gorri, A. Urtiaga, and I. Ortiz, Mixed gas separation study for the hydrogen recovery from $H_2/CO/N_2/CO_2$ post combustion mixtures using a Matrimid membrane, J. Membr. Sci., 378, 359-368 (2011).   DOI
40 E. Foldes, E. Fekete, F. Karasz, and B. Pukanszky, Interaction, miscibility and phase inversion in PBI/PI blends, Polymer, 41, 975-983 (2000).   DOI
41 P. Musto, F. Karasz, and W. Macknight, Hydrogen bonding in polybenzimidazole/poly (ether imide) blends: A spectroscopic study, Macromolecules, 24, 4762-4769 (1991).   DOI
42 D. Weinkauf and D. Paul, Gas transport properties of thermotropic liquid-crystalline copolyesters. II. The effects of copolymer composition, J. Polym. Sci. B. Polym. Phys., 30, 837-349 (1992).   DOI
43 J. Francisco, J. Garcia, M. Bastarrachea, D. Paul, B. Freeman, and M. Vega, CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance, J. Membr. Sci., 597, 117703 (2020).   DOI
44 V. Giel, Z. Moravkova, J. Peter, and M. Trchova, Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties, J. Membr. Sci., 537, 315-322 (2017).   DOI
45 W. Jiao, Y. Ban, Z. Shi, X. Jiang, Y. Li, and W. Yang, Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole, J. Membr. Sci., 533, 1-10 (2017).   DOI
46 S. Sircar, Production of hydrogen and ammonia synthesis gas by pressure swing adsorption, Sep. Sci. Technol., 25, 1087-1099 (1990).   DOI
47 S. Hosseini, M. Teoh, and T. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer, 49, 1594-1603 (2008).   DOI
48 N. Panapitiya, S. Wijenayake, D. Nguyen, C. Karunaweera, Y. Huang, K. Balkus, I. Musselman, and J. Ferraris, Compatibilized immiscible polymer blends for gas separations, Materials, 9, 1-23 (2016).   DOI
49 Y. Li and T. Chung, Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation, J. Membr. Sci., 308, 128-135 (2008).   DOI
50 S. Sircar and T. Golden, Separation science and technology purification of hydrogen by pressure swing, Sep. Sci. Technol., 35, 667-687 (2000).   DOI
51 S. Sircar and W. Kratz, Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption, Sep. Sci. Technol., 23, 2397-2415 (1988).   DOI
52 B. Wang, R. Zhou, L. Yu, L. Qiu, X. Zhi, and X. Zhang, Evaluation of mass transfer correlations applying to cryogenic distillation process with non-equilibrium model, Cryogenics, 97, 22-30 (2019).   DOI
53 A. Yousef, W. El-Maghlany, Y. Eldrainy, and A. Attia, New approach for biogas purification using cryogenic separation and distillation process for $CO_2$ capture, Energy, 156, 328-351 (2018).   DOI
54 R. Bhattacharyya, K. Bhanja, and S. Mohan, Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation, Int. J. Hydrogen Energy, 41, 5003-5018 (2016).   DOI
55 Q. Song, S. Nataraj, M. Roussenova, J. Tan, D. Hughes, W. Li, P. Bourgoin, M. Alam, A. Cheetham, S. Al-Muhtaseb, and E. Sivaniab, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci., 5, 8359-8369 (2012).   DOI
56 U. Balachandran, T. Lee, L. Chan, S. Song, J. Picciolo, and S. Dorris, Hydrogen separation by dense cermet membranes, Fuel, 85, 150-155 (2006).   DOI
57 X. Chen, N. Tien-Binh, S. Kaliaguine, and D. Rodrigue, Polyimide membranes for gas separation: Synthesis, processing and properties, in C. Murphy (ed), Polyimides Synthesis, Applications and Research, 1-71, Nova Sciences Publishers, Hauppauge, New York, USA (2016).
58 J. N. Barsema, G. C. Kapantaidakis, N. Vegt, G. Koops, and M. Wessling, Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide, J. Membr. Sci., 216, 195-205 (2003).   DOI
59 M. Djebbau, Q. Nguyen, R. Clement, and Y. Germain, Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes, J. Membr. Sci., 146, 125-133 (1998).   DOI
60 M. Rezac and T. John, Correlation of penetrant transport with polymer free volume: Additional evidence from block copolymers, Polymer, 39, 599-603 (1998).   DOI
61 S. Reijerkerk, Polyether based block copolymer membranes for $CO_2$ separation, Ipskamp Drukkers B. V., Enschede, The Netherlands (2010).
62 M. K. Jeong and S. Y. Nam, Reviews on preparation and membrane applications of polybenzimidazole polymers, Membr. J., 26, 253-265 (2016).   DOI
63 J. Higgins and C. Marvel, Benzimidazole polymers from aldehydes and tetraamines, J. Polym. Sci A1, 8, 171-177 (1970).   DOI
64 E. K. Kim, S. Y. Lee, S. Y. Nam, S. J. Yoo, J. Y. Kim, J. H. Jang, D. Henkensmeier, H. J. Kim, and J. C. Lee, Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions, Polym. Int., 66, 1812-1818 (2017).   DOI
65 K. Fishel, A. Gulledge, A. Pingitore, J. Hoffman, W. Steckle, and B. Benicewicz, Solution polymerization of polybenzimidazole, J. Polym. Sci. A. Polym. Chem., 54, 1795-1802 (2016).   DOI
66 D. Mecerreyes, H. Grande, O. Miguel, and E. Ochoteco, Porous polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting solid electrolytes, Chem. Mater., 16, 604-607 (2004).   DOI
67 S. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for $H_2/CO_2$ separation, J. Membr. Sci., 375, 231-240 (2011).   DOI
68 K. Wang and T. Chung, Polybenzimidazole nanofiltration hollow fiber for cephalexin separation, AIChE J., 59, 215-228 (2012).   DOI
69 G. Ji and M. Zhao, Membrane separation technology in carbon capture, In: Y. Yun (ed), Recent Advances in Carbon Capture and Storage, 59-90, InTechOpen, London, UK (2017).
70 C. Tarun, E. Croiset, P. Douglas, M. Gupta, and M. Chowdhury, Techno-economic study of $CO_2$ capture from natural gas based hydrogen plants, Int. J. Greenh. Gas Control, 1, 55-61 (2007).   DOI
71 Z. Yang and F. Luo, Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation, Int. J. Hydrogen Energy, 42, 507-514 (2017).   DOI
72 X. Li, X. Chen, and B. Benicewicz, Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs), J. Power Sources, 243, 796-804 (2013).   DOI
73 S. G. Lee, C. Y. Han, Y. S. Seo, J. H. Lee, and B. S. Seo, Shell-and tube type reactor for reforming natural gas and method for producing syngas or hydrogen gas using the same, KR Patent 10-2016-0047386 (2016).
74 D. J. Kang, H. W. Park, M. S. Jang, and J. H. Sang, Hydrogen industry: the dawn of the hydrogen economy, Research Color Series#9, Hyundai Motor Group, 13-22 (2020).
75 G. Illing, K. Hellgardt, M. Schonert, R. Wakeman, and A. Jungbauer, Towards ultrathin polyaniline films for gas separation, J. Membr. Sci., 253, 199-208 (2005).   DOI
76 J. H. Kim, S. Y. Ha, and Y. M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, J. Membr. Sci., 190, 179-193 (2001).   DOI
77 H. Vogel and C. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511-539 (1961).   DOI
78 G. Dong, H. Li, and V. Chen, Factors affect defect-free $Matrimid^{(R)}$ hollow fiber gas separation performance in natural gas purification, J. Membr. Sci., 353, 17-27 (2010).   DOI
79 M. Donohum, B. Minhas, and S. Y. Lee, Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes, J. Membr. Sci., 42, 197-214 (1989).   DOI
80 K. Wang, T. Chung, and J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, J. Membr. Sci., 300, 6-12 (2007).   DOI
81 M. Rezac and B. Schoberl, Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends, J. Membr. Sci., 156, 211-222 (1999).   DOI
82 A. Tashvigh, Y. Feng, M. Weber, C. Maletzko, and T. Chung, 110th anniversary: Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: A review, Ind. Eng. Chem. Res., 58, 10678-10691 (2019).   DOI
83 J. Moon, A. Bridge, C. D'Ambra, B. Freeman, and D. Paul, Gas separation properties of polybenzimidazole/thermally-rearranged polymer blends, J. Membr. Sci., 582, 182-193 (2019).   DOI
84 A. Naderi, A. Tashvigh, T. Chung, M. Weber, and C. Maletzko, Molecular design of double crosslinked sulfonated polyphenylsulfone/polybenzimidazole blend membranes for an efficient hydrogen purification, J. Membr. Sci., 563, 726-733 (2018).   DOI
85 H. Suhaimi, L. Peng, and A. Ahmad, Hydrogen purification using polybenzimidazole mixed matrix membrane with palladium nanoparticles stabilized by polyethylene glycol, Chem. Eng. Technol., 40, 631-638 (2017).   DOI
86 R. Singh, X. Li, K. Dudeck, B. Benicewicz, and K. Berchtold, Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures, Polymer, 119, 134-141 (2017).   DOI
87 T. Su, I. Ball, J. Conklin, S. Huang, R. Larson, S. Nguyen, B. Lew, and R. Kener, Polyaniline/polyimide blends for pervaporation and gas separation studies, Synth. Met., 84, 801-802 (1997).   DOI
88 J. Lainez, B. Zornoza, M. Carta, R. Evans, N. Mckeown, C. Tellez, and J. Coronas, Hydrogen separation at high temperature with dense and asymmetric membranes based on PIM-EA(H2)-TB/PBI blends, Ind. Eng. Chem. Res., 57, 16909-16916 (2018).   DOI
89 T. Yang, G. Shi, and T. Chung, Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purifi cation at high temperatures, Adv. Energy. Mater., 2, 1358-1367 (2012).   DOI
90 D. Xing, S. Chan, and T. Chung, The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration, Green Chem., 16, 1383-1392 (2014).   DOI
91 T. H. Kim, T. W. Lim, and J. C. Lee, High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting, J. Power Sources, 172, 172-179 (2007).   DOI
92 H. Sun, C. Xie, H. Chen, and S. Almheiri, A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane, Appl. Energy, 160, 937-944 (2015).   DOI
93 S. Angional, P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, and A. Magistris, Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs, Int. J. Hydrogen. Energy, 36, 7174-7182 (2011).   DOI
94 A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli, and P. Righetti, Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications, J. Power Sources, 160, 175-180 (2006).   DOI
95 X. Huang, H. Yao, Z. Cheng, and Y. Chen, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization, S. Bashir and J. L. Liu, 85-112, Mater. Sci. (2017).
96 T. Yang and T. Chung, Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation, J. Mater. Chem. A, 1, 6081-6090 (2013).   DOI
97 G. Bernado, T. Araujo, T. Silva Lpoes, J. Sousa, and A. Mendes, Recent advances in membrane technologies for hydrogen purification, Int. J. Hydrogen Energy, 45, 7313-7338 (2020).   DOI
98 E. Lasseuguette and M. Ferrari, Polymer membranes for sustainable gas separation, In: G. Szekely and A. Livingston (eds), Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing, 265-296, Elsevier, Amsterdam, the Netherlands (2019).
99 P. S. Puri, Membrane Engineering for the Treatment of Gases: Volume 1: Gas-Separation Problems With Membranes, E. Drioli and G. Barbieri, 215-243, Royal Society of Chemistry (2011).
100 Gas separation membrane market, by type, application and region-grow prospects and competitive analysis, 2016-2024, Credence Research (2017).
101 J. O. Wan, H. C. Park, and Y. S. Gang, Polymeric gas separation membranes, Polymer Science and Technology, 10, 170-178 (1999).
102 H. Vogel and C. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511-539 (1961).   DOI
103 S. Qing, W. Huang, and D. Yan, Synthesis and characterization of thermally stable sulfonated polybenzimidazoles, Eur. Polym. J., 41, 1589-1595 (2005).   DOI
104 Y. Tsur, H. H. Levine, and M. Levy, Effects of structure on properties of some new aromatic-aliphatic polybenzimidazoles, J. Polym. Sci. Polym. Chem., 12, 1515-1529 (1974).   DOI
105 S. Sivaram, The history of polymers: The origins and the growth of a science, 1-55, National Laboratory, India (1937).
106 H. Vogel and C. Marvel Polybenzimidazoles. II, J. Polym. Sci. Part. A, 1, 1531-1541 (1963).
107 L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. Benicewicz, High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chem. Mater., 17, 5328-5333 (2005).   DOI
108 S. Kumbharkar, P. Karadkar, and U. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture, J. Membr. Sci., 286, 161-169 (2006).   DOI
109 Y. S. Lee, J. H. Shim, and J. Y. Suh, A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes, J. Membr. Sci., 585, 253-259 (2019).   DOI
110 Y. Liu, R. Wang, and T. Chung, Chemical cross-linking modification of polyimide membranes for gas separation, J. Membr. Sci., 189, 231-239 (2001).   DOI
111 K. A. Berchtold, R. P. Singh, K. W. Dudeck, G. J. Dahe, C. F. Welch, and D. Yang, High-temperature polymer-based membrane systems for pre-combustion $CO_2$ capture, Los Alamos National Laboratory, NETL CCT, 10, 1-37 (2012).
112 E. S. Ryi and J. S. Park, Research trend of Pd-based hydrogen membrane, J. Ind. Eng. Chem., 14, 46-53 (2011).   DOI
113 S. K. Ryi, The Study of Pd-Cu-Ni Temary Alloyed Hydrogen Membranes Deposited on Porous Nickel Supports, PhD Dissertation, Korea University, Korea (2007).
114 E. H. Back, Pre-combustion $CO_2$ chapter technology, News & Information for Chemical Engineers, 2, 151-155 (2009).
115 D. Gopalakrishnan, R. Anbazhagan, and K. Aravindhan, Comfort properties of Polybenzimidazole fiber, Text. Res. J., 48, 31-35 (2006).
116 E. K. Kim, S. Y. Lee, S. Y. Nam, S. J. Yoo, J. Y. Kim, J. H. Jang, D. Henkensmeier, H. J. Kim, and J. C. Lee, Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions, Polym. Int., 66, 1812-1818 (2017).   DOI
117 J. Higgins and C. Marvel, Benzimidazole polymers from aldehydes and tetraamines, J. Polym. Sci. A1, 8, 171-177 (1970).   DOI
118 K. Fishel, A. Gulledge, A. Pingitore, J. Hoffman, W. Steckle, and B. Benicewicz, Solution polymerization of polybenzimidazole, Polym. Sci. A1, 54, 1795-1802 (2016).   DOI
119 K. Berchtold, R. Singh, J. Young, and K. Dudeck, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012).   DOI
120 S. Kumbharkar and U. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution, J. Membr. Sci., 357, 134-142 (2010).   DOI
121 X. Li, R. Singh, K. Dudeck, K. Berchtold, and B. Benicewicz, Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014).   DOI
122 R. Singh, X. Li, K. Dudeck, and B. Benicewicz, Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures, Polymer, 119, 134-141 (2017).   DOI
123 L. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).   DOI
124 K. H. Kim, S. W. Choi, J. O. Park, S. K. Kim, M. Y. Lim, K. H. Kim, T. Ko, and J. C. Lee, Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures, J. Membr. Sci., 536, 76-85 (2017).   DOI
125 M. Ball and M. Weeda, The hydrogen economy - Vision or reality?, Int. J. Hydrogen Energy, 40, 7903-7919 (2015).   DOI
126 A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, On hydrogen and hydrogen energy strategies I : Current status and needs, Renew. Sustain. Energy Rev., 9, 255-271 (2005).   DOI
127 S. K. Ngoh and D. Njomo, An overview of hydrogen gas production from solar energy, Renew. Sustain. Energy Rev., 16, 6782-6792 (2012).   DOI
128 R. Navarro, M. Pena, and J. Fierro, Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass, Chem. Rev., 107, 3952-3991 (2007).   DOI
129 X. Li, R. Singh, K. Dudeck, K. Berchtold, and B. Benicewicz, Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014).   DOI
130 N. Brandon and Z. Kurban, Clean energy and the hydrogen economy, Philos. Trans. A. Math. Phys. Eng. Sci., 375, 1-17 (2017).
131 A. H asanoglu, I. Demirci, and A. Secer, Hydrogen production by gasification of Kenaf under subcritical liquid-vapor phase conditions, Int. J. Hydrogen Energy, 4, 14127-14136 (2019).
132 O. Ozcan and A. Akin, Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study, Int. J. Hydrogen Energy, 44, 14117-14126 (2019).   DOI
133 G. Solowski, M. Shalaby, H. Abdallah, A. Shaban, and A. Cenian, Production of hydrogen from biomass and its separation using membrane technology, Renew. Sustain. Energy Rev., 82, 3152-3167 (2018).   DOI
134 D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N. Duong, J. H. Jang, H. J. Kim, N. S. Woo, and T. H. Lim, Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy., 39, 2842-2853 (2014).   DOI
135 E. Favre, Comprehensive Membrane Science and Engineering, E. Drioli, L. Giomo, E. Fontananova, 159-167, Elsevier (2017).
136 G. Shi, H. Chen, Y. Jean, and T. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54, 774-783 (2013).   DOI
137 J. Lainez, B. Zornoza, C. Tellez, and J. Coronas, On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for $H_2/CO_2$ separation, J. Mater. Chem. A, 4, 14334-14341 (2016).   DOI
138 S. Y. Kong, D. H. Kim, D. Henkensmeier, H. J. Kim, H. C. Ham, J. Han, S. P. Yoon, C. W. Yoon, and S. H. Choi, Ultrathin layered Pd/PBI-HFA composite membranes for hydrogen separation, Sep. Purif. Technol., 179, 486-493 (2017).   DOI
139 M. Maarefian, S. Bandehali, S. Azami, H. Sanaeepur, and A. Moghadassi, Hydrogen recovery from ammonia purge gas by a membrane separator: A simulation study, Int, J. Energ. Res., 43, 8217-8229 (2019).
140 H. Z. Chen and T. Chung, $CO_2$-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance, Int. J. Hydrogen Energy, 37, 6001-6011 (2012).   DOI
141 L. Xiao, H. Zhahg, T. Jana, E. Scanlon, R. Chen, E. Choe, L. Ramanathan, S. Yu, and B. Benicewicz, Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications, Fuel Cells, 5, 287-295 (2005).   DOI
142 S. Singha, T. Jana, J. Modestra, A. Kumar, and S. Mohan, Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells, J. Power Sources, 317, 143-152 (2016).   DOI
143 X. Glipa, M. Haddad, D. Jones, and J. Roziere, Synthesis and characterisation of sulfonated polybenzimidazole: A highly conducting proton exchange polymer, Solid State Ionics, 97, 323-331 (1997).   DOI
144 S. W. Chuang and S. L. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, J. Polym. Sci. A. Polym. Chem., 44, 4508-4513 (2005).
145 B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999).   DOI
146 S. Hosseini, M. Omidkhah, A. Moghaddam, V. Pirouzfar, W. Krantz, and N. Tan, Enhancing the properties and gas separation performance of PBI-polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process, Sep. Purif. Technol., 122, 278-289 (2014),   DOI