• Title/Summary/Keyword: Separation Parameter

검색결과 253건 처리시간 0.026초

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • 제10권4호
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.

A Numerical analysis on the pressure drop of the flow field past a two-staged orifice in a rectangular duct (사각덕트 내 이단 오리피스를 지나는 유동의 압력강하에 대한 수치해석)

  • Song, Woo-Yeol;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2747-2752
    • /
    • 2007
  • A numerical study has been performed on the flow past a two-staged orifice in a rectangular duct. The flow field including the recirculation region behind the orifice was investigated and the pressure drop was calculated. Water was used as a working fluid and the flow was treated as the turbulent flow, of which the Raynolds number was 6000. The main parameters for the pressure drop and the recirculation region were the orifice's inclined angle against the duct, the interval between two orifices, the shape of the orifice's hole having the same area, and the change of the hole position at the same interval. The variation of the flow field was investigated with each parameter. Consequently, it was found that the most dominant parameter influencing the drop of the pressure was the change of the hole position at the same interval between orifices. Especially when the interval between orifices was narrow and the relative position the holes was changed, its effect to the flow field was shown most drastically as a result of this study. The SIMPLER algorithm with FLUENT code was employed to analyze the flow field.

  • PDF

Thermodynamic Correlations for Predicting the Properties of Coal-Tar Fractions and Process Analysys (석탄 유분에 대한 물성예측식 개발 및 공정에 대한 연구)

  • Oh, Jun Sung;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • 제43권4호
    • /
    • pp.458-466
    • /
    • 2005
  • Full-scale utilizations of batch separation process often require knowledge about thermodynamics and correlation techniques of physical properties of complex mixture consisting of a great number of many unknown components. Various empirical correlations have been proposed to predict the physical properties mostly about the pseudocomponent of petroleum. In this study, one parameter correlations are developed for the calculations of the critical physical properties and ideal heat capacity of the pseudo-component of coal tar fractions. Developed model can provide a tool for the design and operations for the batch distillation of coal tar mixture.

Vibration Characteristics of High Speed Rotary Bell Cup (고속 회전 벨 컵의 진동 특성)

  • Sohn, Jung Woo;Park, Ji Hoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제25권11호
    • /
    • pp.771-778
    • /
    • 2015
  • In this work, vibration characteristics of high speed rotary bell cup for paint atomizer are numerically investigated. New type of bell cup model is proposed and additional corresponding models with design parameter variations for length and diameter are constructed. Dynamic characteristics, such as natural frequencies and corresponding mode shapes, are studied for each model as a first step. To investigate operation stability, critical speed of rotary bell cup is numerically analyzed based on Campbell diagram and separation margin between operating speed and critical speed is identified. Unbalance vibration responses are also investigated with respect to design parameter variation, operating speed and balancing quality grade of G. Then the proper design guideline for stable operation of high speed rotary bell cup for paint atomizer is suggested.

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 2 : Performance Evaluations and Applications (방향 시계열에 의한 회전체 동특성 규명 : (II) 성능 평가 및 응용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • 제9권1호
    • /
    • pp.60-69
    • /
    • 1999
  • In the first paper of this research$^{(1)}$. a new time series method. directional ARMAX (dARMAX) model-based approach. was proposed for rotordynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible. to account for the dynamic characteristics inherent in rotating machinery. In this second part. an evaluation of its performance characteristics based on both simulated and experimental data is presented. Numerical simulations are carried out to show that the method. a complex time series method. successfully implements the complex modal testing in the time domain. and it is superior in nature to the conventional ARMAX and the frequency-domain methods in the estimation of the modal parameters for isotropic and weakly anisotropic rotor systems. Experiments are carried out to demonstrate the applicability and the effectiveness of the dARMAX model-based approach, following the proposed fitting strategy. for the rotordynamics identification.

  • PDF

Pattern Recognition for the Target Signal Using Acoustic Scattering Feature Parameter (표적신호 음향산란 특징파라미터를 이용한 패턴인식에 관한 연구)

  • 주재훈;신기철;김재수
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.93-100
    • /
    • 2000
  • Target signal feature parameters are very important to classify target by active sonar. Two highly correlated broad band pulses separated by time T have a time separation pitch(TSP) of 1/T Hz which is equal to the trough-to-trough or peak-to-peak spacing of its spectrum. In this study, TSP informations which represent feature of each target signal were effectively extracted by the FFT. The extracted TSP feature parameters were also applied to the pattern recognition algorithm to classify target and to analyze their properties.

  • PDF

A Study on the Free Amino Acids in the Urine of the Korean Children (한국 소아뇨(小兒尿)의 유리(遊離)아미노산(酸)에 대한 연구(硏究))

  • Kimm, Sung-Wun;Kim, Yung-Kuk;Park, Soo-Hun;Choi, Yung
    • Journal of Nutrition and Health
    • /
    • 제5권4호
    • /
    • pp.145-150
    • /
    • 1972
  • In order to establish a new biochemical parameter to evaluate nuitrtitional status. the present paper presents a paper chromatographic procedure. which enables clear separation of the essential and nonessential free amino acids in the urine without desalting the sample prior to chromatographic analysis The children of school age. showing difference in their body physiques. from the rural and urban areas in Korea were selected in collecting the 24 hour urine specimens. with the following conclusions. (1) A new procedure utilyzing paper chromatographic analysis. without desalting the urine. was proposed to establish a new biochemical parameter for nutritional status by analyzing the ratio of the nonessential to the essential free amino acids in urine. (2) According to the pesent procedure. the ratio obtained with the urban children was proved to be $1.33{\pm}0.18$, whereas that with the rural children was $1.59{\pm}0.24$; suggesting the lower the ratio. the superior the body physiques and nutritional status. (3) The ratio had a statistically significant correlation with the body and sitting heights as well as the body weight. but not with the girth.

  • PDF

Derivation of Rainfall Intensity-Duration-Frequency Equation Based on the Approproate Probability Distribution (지속기간별 강우자료의 적정분포형 선정을 통한 확률강우강도식의 유도)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Han, Jeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • 제32권3호
    • /
    • pp.247-254
    • /
    • 1999
  • The frequency analyses of annual maximum rainfall data for 22 rainfall gauging stations is Korea were performed. The method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) were used in parameter estimation. The GEV distribution was selected as an appropriate model for annual maximum rainfall data based on parameter validity condition, graphical analysis, separation effect, and goodness of fit tests. For the selected GEV model, spatial analysis was performed and rainfall intensity-duration-frequency equation was derived by using linearization technique. The derived rainfall intensity-duration-frequency equation can be used for estimating rainfall quantiles of the selected stations with convenience and reliability in practice.

  • PDF

Characterization of Pervaporation Membranes and Its Operation Parameters for Alcohol Concentration (알코올 농축을 위한 투과증발막의 특성 및 조업변수 연구)

  • 임군택;김현일;김성수
    • Membrane Journal
    • /
    • 제9권2호
    • /
    • pp.107-113
    • /
    • 1999
  • Alcohol concentration via pervaporation process was performed by using commercial PDMS(polydimethylsiloxane) composite membrane and plasma treated PP(polypropylene) membranes. Effects of operating parameters of pcrvaporation process were examined. With the increase of butanol concentration in the feed, flux and selectivity increased due to the greater affinity of butanol with PDMS than that of water. As the operating temperature increased, free volume as well as the solubilities and diffusivities of alcohol and water increased to result in the greater flux and less selectivity of the membrane. As solubility parameter difference between alcohol and PDMS membrane decreased, high flux and good selectivity were obtained. When PP membrane was plasma treated with methanol, it has 6 times greater flux than PDMS membrane with equivalent separation factor. With the increase of plasma treatment time, flux and selectivity were enhanced. However, excess treatment time caused pore blocking to result in the flux decrease.

  • PDF

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.