• Title/Summary/Keyword: Sensory-

Search Result 10,363, Processing Time 0.033 seconds

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

The Correlation of Sensory Processing Type, Learning Styles and Learning Strategies for University Students (대학생의 감각처리 유형과 학습유형, 학습전략의 상관관계)

  • Hong, Soyoung
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 2018
  • Objective : The purpose of this study is to investigate correlation of sensory processing patterns, learning styles and learning strategies for university students. Methods : Participants of this study are 115 students from K university in Busan, South Korea. Measurements are Adolescent/Adult Sensory Profile (AASP) for sensory processing patterns, the Study Process Questionnaire (SPQ) for learning styles, and the Motivated Strategies for Learning Questionnaire (MSLQ) for learning strategies. The data collected was analyzed by SPSS/WIN 20.0 for chisuare test and Pearson corelation coefficient. Results : For sensory processing patterns and learning styles, there were correlation between low registration type and surface type of learning (p=0.03), and between sensory seeking type and deep type of learning (p=0.02). For sensory processing patterns and learning strategies, sensory seeking type was correlated with organized learning strategy (p=0.00), and sensory sensitivity type was correlated with organizational learning strategy (p=0.03) and meta-cognitive learning strategy (p=0.00). Conclusion : This study found that there is correlation between sensory processing patterns, learning styles and learning strategies with implying learning styles and learning strategies can be different depends on sensory procession pattern. The results of this study can be used as a basic data to select learning type and learning strategy appropriate for an individual based on his or her sensory processing patterns.

Development of Sensory Feedback System for Myoelectric Prosthetic Hand (전동의수 사용자를 위한 감각 측정 및 전달 시스템 개발)

  • Bae, Ju-Hwan;Jung, Sung Yoon;Kim, Shinki;Mun, Museong;Ko, Chang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2015
  • This study aimed to develop a sensory feedback system which could measure force and temperature for the user of myoelectric prosthetic hands. The Sensory measurement module consisted of a force sensing resistor to measure forces and non-contact infrared temperature sensor. These sensors were attached on the fingertips of the myoelectric prosthetic hand. The module was validated by using standard weights corresponding to external force and a Peltier module. Sensory transmission module consisted of four vibration motors. Eight vibration patterns were generated by combining motion of each vibration motor and were dependent on kinds and/or magnitude. The module was verified by using standard weigts and water at varying temperatures. There were correlations of force and temperature between the sensory measurement module and standard weight and water. Additionally, exact vibration patterns were generated, indicating the efficacy of the sensory feedback system for the myoelectric prosthetic hand.

Handle analysis of Cosmetic Textiles and its Correlation with Subjective haracteristics -Focus on puff textile-

  • Jung, Cheul Sun;Koo, Young Seok
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.312-318
    • /
    • 2014
  • This study examined the correlation between a handle evaluation of cosmetic puff textile and a sensory evaluation. The KES-F system was used to analyze the main mechanical factors for the handle evaluation and a statistical method was used for the sensory evaluation. The results revealed different mechanical properties and handle values of the tested cosmetic puff textiles. A material type and structure of the cosmetic textile affected the handle property of the material which is the most important factor for a cosmetic purpose. Particularly, the physical properties of textile material are likely to be important factors for the sensory property of cosmetic material. In addition, the sensory evaluation also revealed different sensory characteristics of the cosmetic efficiency according to the cosmetic puff textile. No close relationship was observed between the mechanical properties and sensory evaluation on the cosmetic puff textiles. The sensory evaluation of a cosmetic efficiency is not only decided by the physical and mechanical characteristics of the cosmetic textile material. Overall, when using textiles used for the cosmetic purposes, it is important to consider not only the proper mechanical properties of the textiles but also the use and sensory satisfaction. Development and selection of the cosmetic textiles should be focused on both the material function and consumer satisfaction.

Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements

  • Choe, Jee-Hwan;Choi, Mi-Hee;Rhee, Min-Suk;Kim, Byoung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1029-1036
    • /
    • 2016
  • This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation.

Segmental Sensory Nerve Conduction Study in Vibration Exposed Subjects

  • Kim Mi-Jung;Yoon Cheol-In;Choi Hyun-Ju
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.193-199
    • /
    • 2005
  • The present study was performed to assess peripheral neural involvement by exposure to hand-arm vibration. Segmental sensory nerve conduction in the median and ulnar nerves were measured in shipyard workers exposed to vibration. The subjects were 47 male adults exposed to hand-arm vibration and 7 healthy male controls. The subjects underwent an extensive bilateral neurophysiological examination. Sensory compound nerve action potential (SNAP) of the median and ulnar nerves in palm-finger and wrist-palm segments were measured by antidromic method. And SNAP of the median and ulnar nerves in wrist-proximal finger and wrist-distal finger segments were measured by orthodromic method. Result of sensory nerve conduction study was abnormal in 31 patients $(66\%)$ and normal in 16 patients $(34\%)$ of subjects. The pathological pattern in the hand-arm vibration exposed group was 13 patients $(28\%)$ of carpal tunnel syndrome, 18 patients $(38\%)$ of distal sensory neuropathy, 7 patients $(15\%)$ of multifocal and 1 patient $(2\%)$ of Guyon syndrome. The present study indicates that vibration-induced nerve impairments exist both in the finger-palm and palm-wrist segment of median and ulnar sensory nerves. The results suggest that segmental sensory nerve conduction study would be useful as objective indication of peripheral nerve impairment induced by the hand-arm vibration.

  • PDF

Correlation between Instrumental Parameter and Sensory Parameter in the Texture of Cooked Rice (쌀밥의 조직감에 대한 기기적 측정값과 관능적 측정값의 상관관계 연구)

  • Choi, Won-Seok
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.605-609
    • /
    • 2016
  • This study aimed to find the optimum instrumental test conditions for the Texture Profile Analysis (TPA) of cooked rice in order to predict the sensory texture attributes (hardness, adhesiveness, chewiness). Sensory evaluation was performed for three kinds of instant cooked rice with university students in their twenties and the results of the sensory evaluation were compared to instrumental TPA patterns. Using partial least squares regression, the instrumental TPA results at a cross-head speed of 1.0 mm/sec and a compression ratio of 70% proved to be an excellent predictor of the sensory attributes of hardness ($R^2=0.99$) and chewiness ($R^2=0.99$). The results at a cross-head speed of 0.5 mm/sec and compression ratio of 30% provided an excellent model for the prediction of sensory adhesiveness ($R^2=0.83$). In this experimental range, sensory hardness and chewiness showed a high correlation with instrumental TPA parameters (hardness, cohesiveness, adhesiveness, springiness, chewiness) with a high cross-head speed and compression ratio, while sensory adhesiveness showed a high correlation with the TPA parameters with a low cross-head speed and compression ratio.

The Relationship between Sensory Processing Abilities and Gross and Fine Motor Capabilities of Children with Cerebral Palsy

  • Park, Myoung-Ok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSE: The purpose of this study was to investigate the difference and relationship between sensory processing abilities, gross motor and fine motor capabilities in children with cerebral palsy. METHODS: 104 children with cerebral palsy participated in the study. Sensory processing abilities of the subjects were measured by Short Sensory Profile (SSP). Gross and fine motor abilities were each measured using the Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS), respectively. RESULTS: There were significant correlations between SSP level and GMFCS (R=.72, p<.00) or MACS (R=.77, p<.00) levels. Significant differences were showed each gross motor (p=.01) and fine motor level (p=.00) among sensory processing level of children. In addition, sub-items of sensory processing as Tactile sensitivity, Movement sensitivity, Auditory filtering and Low energy/Weak were significantly were showed significant correlations gross motor and fine motor level (p=.01). Also, multiple regression result was showed that as MACS level and GMFCS level were higher, the SSP total score was higher all of participants (adjusted $R^2=.62$). CONCLUSION: Sensory processing abilities of children with cerebral palsy were related with gross motor and fine motor capabilities. Also gross motor and fine motor capabilities are as higher, the sensory processing skill was well of cerebral palsy.

Neuromorphic Sensory Cognition-Focused on Touch and Smell (뉴로모픽 감각 인지 기술 동향 - 촉각, 후각을 중심으로)

  • K.-H. Park;H.-K. Lee;Y. Kang;D. Kim;J.W. Lim;C.H. Je;J. Yun;J.-Y. Kim;S.Q. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.62-74
    • /
    • 2023
  • In response to diverse external stimuli, sensory receptors generate spiking nerve signals. These generated signals are transmitted to the brain along the neural pathway to advance to the stage of recognition or perception, and then they reach the area of discrimination or judgment for remembering, assessing, and processing incoming information. We review research trends in neuromorphic sensory perception technology inspired by biological sensory perception functions. Among the various senses, we consider sensory nerve decoding technology based on sensory nerve pathways focusing on touch and smell, neuromorphic synapse elements that mimic biological neurons and synapses, and neuromorphic processors. Neuromorphic sensory devices, neuromorphic synapses, and artificial sensory memory devices that integrate storage components are being actively studied. However, various problems remain to be solved, such as learning methods to implement cognitive functions beyond simple detection. Considering applications such as virtual reality, medical welfare, neuroscience, and cranial nerve interfaces, neuromorphic sensory recognition technology is expected to be actively developed based on new technologies, including combinatorial neurocognitive cell technology.

Differences in Eating Attitudes According to the Sensory Processing Characteristics of the Average Woman (일반 여성의 감각처리 특성에 따른 섭식 태도의 차이)

  • Moon, Gyu-Lahn;Lee, Chunyeop;Joo, A-Young;Kwak, Naim;Jung, Hyerim
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.18 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • Objective : This study was conducted to confirm general differences in eating attitudes according to the sensory processing characteristics of women. Methods : The Adolescent/Adult Sensory Profile (AASP) and the Eating Attitude Test (EAT-26) were used to survey 241 women. Their eating attitudes according to the sensory processing characteristics was analyzed using an independent t-test and one-way ANOVA, and the post-analysis was performed using the Scheffe test. Results : Among the sensory processing characteristics, except for eating control due to low registration, binge-eating and foodlessness due to sensory avoidance, all eating attitudes were significantly different according to sensory processing characteristics (p<.05). The anorexic behaviour, binge-eating and foodlessness was shown to be negative in cases of those who had much lower registration than most people. All eating attitudes, such as anorexia, binge-eating and foodlessness, and eating control, were shown to be negative in cases of women whose sensation seeking was equal to or much greater than the general population. The binge-eating and foodlessness were shown to be negative in cases of high sensory sensitivity. The anorexic behaviour was shown to be negative in cases of elevated sensory avoidance. Conclusion : Eating attitudes differed depending on the sensory processing characteristics. As such, sensory integration mediation can be proposed as a method of controlling the eating attitudes of women in general.