DOI QR코드

DOI QR Code

Neuromorphic Sensory Cognition-Focused on Touch and Smell

뉴로모픽 감각 인지 기술 동향 - 촉각, 후각을 중심으로

  • K.-H. Park ;
  • H.-K. Lee ;
  • Y. Kang ;
  • D. Kim ;
  • J.W. Lim ;
  • C.H. Je ;
  • J. Yun ;
  • J.-Y. Kim ;
  • S.Q. Lee
  • 박강호 (브레인링크창의연구실) ;
  • 이형근 (브레인링크창의연구실) ;
  • 강유성 (브레인링크창의연구실) ;
  • 김도엽 (브레인링크창의연구실) ;
  • 임정욱 (차세대반도체소자연구실) ;
  • 제창한 (브레인링크창의연구실) ;
  • 윤조호 (브레인링크창의연구실) ;
  • 김정연 (브레인링크창의연구실) ;
  • 이성규 (브레인링크창의연구실)
  • Published : 2023.12.01

Abstract

In response to diverse external stimuli, sensory receptors generate spiking nerve signals. These generated signals are transmitted to the brain along the neural pathway to advance to the stage of recognition or perception, and then they reach the area of discrimination or judgment for remembering, assessing, and processing incoming information. We review research trends in neuromorphic sensory perception technology inspired by biological sensory perception functions. Among the various senses, we consider sensory nerve decoding technology based on sensory nerve pathways focusing on touch and smell, neuromorphic synapse elements that mimic biological neurons and synapses, and neuromorphic processors. Neuromorphic sensory devices, neuromorphic synapses, and artificial sensory memory devices that integrate storage components are being actively studied. However, various problems remain to be solved, such as learning methods to implement cognitive functions beyond simple detection. Considering applications such as virtual reality, medical welfare, neuroscience, and cranial nerve interfaces, neuromorphic sensory recognition technology is expected to be actively developed based on new technologies, including combinatorial neurocognitive cell technology.

Keywords

Acknowledgement

본 연구는 대한민국 정부로부터 지원받은 한국전자통신연구원(ETRI) 기본사업인 "뉴로모픽 디코더-인코더 원천기술 연구개발(23ZB1140)" 사업의 지원을 받아 수행되었습니다.

References

  1. M.T. Shipley et al., "The olfactory system," Neuroscience in Medicine, 2003, pp. 579-593.
  2. M.F. Bear et al., "Neuroscience 4th ed," 2015.
  3. A.J. Emanuel et al., "Cortical responses to touch reflect subcortical integration of LTMR signals," Nature, vol. 600, no. 7890, 2021, pp. 680-685. https://doi.org/10.1038/s41586-021-04094-x
  4. J. Turecek et al., "The encoding of touch by somatotopically aligned dorsal column subdivisions," Nature, vol. 612, no. 7939, 2022, pp. 310-315. https://doi.org/10.1038/s41586-022-05470-x
  5. J.D. Lieber et al., "High-dimensional representation of texture in somatosensory cortex of primates," PNAS, vol. 116, no. 8, 2019, pp. 3268-3277. https://doi.org/10.1073/pnas.1818501116
  6. E.M. Izhikevich, "Simple model of spiking neurons," IEEE Trans. Neural. Netw., vol. 14, no. 6, 2003, pp. 1569-1572. https://doi.org/10.1109/TNN.2003.820440
  7. J. Kim et al., "Modeling long-term spike frequency adaptation in sa-i afferent neurons using an izhikevich-based biological neuron model," Exp. Neurobiol., vol. 32, no. 3, 2023, pp. 157-169. https://doi.org/10.5607/en23005
  8. Y. Kang et al., "A decoding model of spike firing in the slowly-adapting receptors for encoding the natural tactility," in Proc. Neuroscience 2022, (San Diego, CA, USA), Nov. 2022.
  9. L. Buck et al., "A novel multigene family may encode odorant receptors: A molecular basis for odor recognition," Cell, vol. 65, no. 1, 1991, pp. 175-187. https://doi.org/10.1016/0092-8674(91)90418-X
  10. K. Kaeppler et al., "Odor classification: A review of factors influencing perception-based odor arrangements," Chemical Senses, vol. 38, no. 3, 2013, pp. 189-209. https://doi.org/10.1093/chemse/bjs141
  11. F. Kermen et al., "Molecular complexity determines the number of olfactory notes and the pleasantness of smells," Sci. Rep., vol. 1, 2011.
  12. B. Malnic et al., "Combinatorial receptor codes for odor," Cell, vol. 96, no. 5, 1999, pp. 713-723. https://doi.org/10.1016/S0092-8674(00)80581-4
  13. O. Baud et al., "The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant binding pocket," Biochemistry, vol. 50, no. 5, 2011, pp. 843-853. https://doi.org/10.1021/bi1017396
  14. S.M. Boyle et al., "Expanding the olfactory code by in silico decoding of odor-receptor chemical space," eLife, vol. 2, 2013.
  15. H. Jiang et al., "Theta oscillations rapidly convey odor-specific content in human piriform cortex," Neuron, vol. 94, no. 1, 2017, pp. 207-219. https://doi.org/10.1016/j.neuron.2017.03.021
  16. P. Fan et al., "PtNPs/PEDOT:PSS-modified microelectrode arrays reveal electrophysiological activities of different neurons in medial amygdala of mice under innate fear," Front. Neurosci., vol. 16, 2022.
  17. J. Kim et al., "A bird's-eye view of brain activity in socially interacting mice through mobile edge computing(MEC)," Sci. Adv., vol. 6, no. 49, 2020.
  18. J.-K. han et al., "A review of artificial spiking neuron devices for neural processing and sensing," Adv. Funct. Mater., vol. 32, no. 33, 2022.
  19. S. Dai et al., "Recent advances in transistor-based artificial synapses," Adv. Funct. Mater., vol. 29, no. 42, 2019.
  20. J.W. Lim et al., "Photo-synaptic oxide transistors with Al2O3/SiOX stacked gate dielectric exhibiting 1024 conduction states with good linearity," Adv. Electron. Mater., vol. 8, no. 10, 2022.
  21. H. Lee et al., "Three-terminal ovonic threshold switch (3T-OTS) with tunable threshold voltage for versatile artificial sensory neurons," Nano Lett., vol. 22, no. 2, 2022, pp. 733-739. https://doi.org/10.1021/acs.nanolett.1c04125
  22. M.-K. Kim et al., "Emerging materials for neuromorphic devices and systems," iSciences, vol. 23, no. 12, 2020.
  23. S.H. Sung et al., "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nat. Commun., vol. 13, no. 1, 2022.
  24. C. Wan et al., "Artificial sensory memory," Adv. Mater., vol. 32, no. 15, 2020.
  25. https://news.nus.edu.sg/intelligent-sensing-abilities-for-robots-to-carry-out-complex-tasks/
  26. S.H. Kim et al., "A bioinspired stretchable sensory-neuromorphic system," Adv. Mater., vol. 33, no. 44, 2021.
  27. S. Chun et al., "An artificial neural tactile sensing system," Nat. Electron., vol. 4, no. 6, 2021, pp. 429-438. https://doi.org/10.1038/s41928-021-00585-x
  28. J. Li et al., "Oxygen-vacancy-induced synaptic plasticity in an electrospun InGdO nanofiber transistor for a gas sensory system with a learning function," ACS Appl. Mater. Interfaces, vol. 14, no. 6, 2022, pp. 8587-8597. https://doi.org/10.1021/acsami.1c23390
  29. D. Kwon et al., "Efficient fusion of spiking neural networks and FET-type gas sensors for a fast and reliable artificial olfactory system," Sens. Actuators B: Chem., vol. 345, 2021.
  30. S.Y. Chun et al., "An Artificial Olfactory System Based on a Chemi-Memristive Device(Adv. Mater. 35/2023)," Adv. Mater., vol. 35, no. 35, 2023.
  31. W. Maass, "Networks of spiking neurons: The third generation of neural network models," Neural Netw., vol. 10, no. 9, 1997, pp. 1659-1671. https://doi.org/10.1016/S0893-6080(97)00011-7
  32. P.U. Diehl et al., "Unsupervised learning of digit recognition using spike-timing-dependent plasticity," Front. Comput. Neurosci., vol. 9, 2015.
  33. https://www.youtube.com/watch?v=WcwEr5cMSoM
  34. J.-K. Han et al., "Artificial olfactory neuron for an in-sensor neuromorphic nose," Adv. Sci., vol. 9, no. 18, 2022.
  35. H. Tan et al., "Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves," Nat. Commun., vol. 11, no. 1, 2020.