• Title/Summary/Keyword: Sensory nervous system

Search Result 110, Processing Time 0.03 seconds

Study of runout-motion in body physical techniques: physical index and sensory index

  • Kim, Jeong-lae;Shin, Kyu-ok
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.56-60
    • /
    • 2016
  • Body physical technique is to pursuit the dynamic motion by the physical index(PI) and sensory index(SI) on the physical body function. Function of the physical body by the motor condition is organized the dynamic physical system. For the physical motion of signal, we is defined a runout value of the body function by the physical index on the dynamic state. The concept of body physical index was identified the reference of physical index and sensory index by the body technique. As to detect a variation of the body physical technique-runout physical index(BPT-RPI) of the maximum and average and minimum in terms of physical motion, and the dynamic sensory value that was a runout function of the vision variation of the $Vi-{\xi}_{MAX-AVG-MIN}$ with $2.53{\pm}4.85$ units, that was a runout function of the vestibular variation of the $Ve-{\xi}_{MAX-AVG-MIN}$ with ($-0.69{\pm}2.32$)units, that was a runout function of the somatosensory variation of the $So-{\xi}_{MAX-AVG-MIN}$ with ($-1.43{\pm}-1.36$) units. The dynamic physical motion will be to confirm at the variable function of the runout motion for the body function values of dynamic physical index on the BPT-RPI that was identified an evaluation of the physical sensory function by the dynamic physical system. Runout body system was mentioned of a physical body situation by the mild moving and was refer a runout data of dynamic physical nervous index.

A Case of Widespread Cavernous Malformations of the Central Nervous System Associated with Acute Neurologic Deficit

  • Noh, Kyung Chul;Chung, Sung Eun;Lee, Dokyung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.34-37
    • /
    • 2017
  • A 45-year-old female visited our clinic due to sudden right leg weakness and sensory loss. Brain and spinal cord magnetic resonance imaging showed widespread cavernous malformations. Cavernous malformation in L1 spine area was accompanied by a subacute stage hematoma with perilesional edema. Sensory loss subsided after corticosteroid therapy. Usually, neurologic deficit by spinal cavernous malformation appears more chronically in the adults compared to children. Treatment options are difficult to establish in a case with multiple cavernous malformations. Identifying hemorrhagic lesions by extensive neuroimaging evaluation could be helpful to select the treatment target for cavernous malformation.

The peripheral and central mechanisms underlying itch

  • Lee, Jae Seung;Han, Jasmin Sanghyun;Lee, Kyeongho;Bang, Juwon;Lee, Hyosang
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.474-487
    • /
    • 2016
  • Itch is one of the most distressing sensations that substantially impair quality of life. It is a cardinal symptom of many skin diseases and is also caused by a variety of systemic disorders. Unfortunately, currently available itch medications are ineffective in many chronic itch conditions, and they often cause undesirable side effects. To develop novel therapeutic strategies, it is essential to identify primary afferent neurons that selectively respond to itch mediators as well as the central nervous system components that process the sensation of itch and initiate behavioral responses. This review summarizes recent progress in the study of itch, focusing on itch-selective receptors, signaling molecules, neuronal pathways from the primary sensory neurons to the brain, and potential decoding mechanisms based on which itch is distinguished from pain.

Effects of Sensorimotor Training on Postural Stability and Pain in Patients with Chronic Low Back Pain

  • Kang, Kwonyoung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2314-2322
    • /
    • 2021
  • Background: Back pain is associated with a high risk of recurrence. Various physical therapy techniques for back pain have been studied, including reprogramming the central nervous system by integrating sensation and motion with sensory exercise training. Objectives: To aimed verify the effectiveness of sensorimotor training in improving postural stability and pain levels. Design: A randomized controlled trial. Methods: The study population was randomized into a sensory exercise training group and trunk stabilization training group and treated three times a week for 4 weeks. Each group took part in sensorimotor training for 15 minutes or lumbar stabilization exercise for 15 minutes. Results: After the intervention both groups showed Improvements in the variables. There was a significant difference in the dynamic postural stability, limit of stability, and modified visual analog scale scores in the sensorimotor training group compared to the lumbar stabilization exercise group (P<.05). Conclusion: Sensorimotor training appears to be an effective physical therapy exercise program that can be applied in patients with low back pain to improve muscle control ability.

Quantitative sudomotor axon reflex test (QSART) as a diagnostic tool of small fiber neuropathy

  • Suh, Bum Chun
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Small fiber neuropathy is a painful neuropathy that cannot be assessed using nerve conduction studies. A skin biopsy and quantitative sensory testing (QST) are the gold standards for small fiber neuropathy diagnosis. However, a skin biopsy is invasive and commercially unavailable in Korea. QST is a method involving a thermal threshold, but its results can be affected by cognition as well as lesions of the central nervous system. Quantitative sudomotor axon reflex test (QSART) is a quantitative method of assessing sweat glands innervated by small fibers. In this review, we assessed the utility of QSART in evaluating small fiber neuropathy.

Effects of Saccharin Intake on Hippocampal and Cortical Plasticity in Juvenile and Adolescent Rats

  • Park, Jong-Sil;Yoo, Sang-Bae;Kim, Jin-Young;Lee, Sung-Joong;Oh, Seog-Bae;Kim, Joong-Soo;Lee, Jong-Ho;Park, Kyung-Pyo;Jahng, Jeong-Won;Choi, Se-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • The sensory system is developed and optimized by experiences given in the early phase of life in association with other regions of the nervous system. To date, many studies have revealed that deprivation of specific sensory experiences can modify the structure and function of the central nervous system; however, the effects of sensory overload remains unclear. Here we studied the effect of overloading the taste sense in the early period of life on the synaptic plasticity of rat hippocampus and somatosensory cortex. We prepared male and female Sprague Dawley rats with ad libitum access to a 0.1% saccharin solution for 2 hrs per day for three weeks after weaning on postnatal day 22. Saccharin consumption was slightly increased in males compared with females; however, saccharin intake did not affect chow intake or weight gain either in male or in female rats. We examined the effect of saccharin-intake on long term potentiation (LTP) formation in hippocampal Schaffer collateral pathway and somatosensory cortex layer IV - II/III pathways in the 6-week old saccharin-fed rats. There was no significant difference in LTP formation in the hippocampus between the control group and saccharin-treated group in both male and female rats. Also in the somatosensory cortex, we did not see a significant difference in LTP among the groups. Therefore, we conclude that saccharin-intake during 3~6 weeks may not affect the development of physiological function of the cortical and hippocampal synapses in rats.

Primary Intramedullary Spinal Sarcoma : A Case Report and Review of the Current Literatures

  • Kim, Su-Hyeong;Bak, Koang-Hum;Kim, Dong-Won;Kang, Tae-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.5
    • /
    • pp.448-451
    • /
    • 2010
  • Primary central nervous system (CNS) sarcomas are exceedingly rare, and, to the best of our knowledge, there has not yet been a report of intramedullary sarcoma. Here, we report a primary intradural intramedullary sarcoma of the spinal cord in a four-year-old boy who presented with low back pain and a radiculopathy involving both lower extremities. The tumor showed significant enhancement on magnetic resonance (MR) images due to its extreme vascularity. Gross total tumor removal was performed with microelectrical pulse recording, and the patient also received adjuvant radiotherapy and chemotherapy. After the operation, the patient's sensory deficits were improved. Because CNS dissemination is common, entire neuraxis evaluation is essential, although there was no evidence of dissemination in this case. The prognosis of primary CNS sarcoma is poor due to infiltrative nature and early CNS dissemination is common, and the treatment of choice is radical surgical resection. Adjuvant therapy is also beneficial with radiotherapy and chemotherapy.

Intraoperative Neurophysiology Monitoring for Spinal Dysraphism

  • Kim, Keewon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • Spinal dysraphism often causes neurological impairment from direct involvement of lesions or from cord tethering. The conus medullaris and lumbosacral roots are most vulnerable. Surgical intervention such as untethering surgery is indicated to minimize or prevent further neurological deficits. Because untethering surgery itself imposes risk of neural injury, intraoperative neurophysiological monitoring (IONM) is indicated to help surgeons to be guided during surgery and to improve functional outcome. Monitoring of electromyography (EMG), motor evoked potential, and bulbocavernosus reflex (BCR) is essential modalities in IONM for untethering. Sensory evoked potential can be also employed to further interpretation. In specific, free-running EMG and triggered EMG is of most utility to identify lumbosacral roots within the field of surgery and filum terminale or non-functioning cord can be also confirmed by absence of responses at higher intensity of stimulation. The sacral nervous system should be vigilantly monitored as pathophysiology of tethered cord syndrome affects the sacral function most and earliest. BCR monitoring can be readily applicable for sacral monitoring and has been shown to be useful for prediction of postoperative sacral dysfunction. Further research is guaranteed because current IONM methodology in spinal dysraphism is still deficient of quantitative and objective evaluation and fails to directly measure the sacral autonomic nervous system.

Effects of Oriental Medicinal Drugs on Axonal Regeneration in the Spinal Cord Neurons

  • An Joung-Jo;NamGung Uk;Seo In-Chan;Kim Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1640-1646
    • /
    • 2005
  • An oriental medicinal drugs Jahageo (JHG, Hominis placenta) were examined to determine its effects on the responsiveness of central nervous system neurons after injury. We found that JHG was involved in neurite outgrowth of DRG sensory axons. JHG treatment also increased expression of axonal growth-associated protein GAP-43 in DRG sensory neurons after sciatic nerve injury and in the injured spinal cord. JHG treatment during the spinal cord injury increased induction levels of cell division cycle 2 (Cdc2) protein in DRG as well as in the spinal cord. Histochemical investigation showed that induced Cdc2 in the injured spinal cord was found in non-neuronal cells. These results suggest that JHG regulates activities of non-neuronal cells such as oligodendrocyte and astrocyte in responses to spinal cord injury and protects neuronal responsiveness after axonal damage.

Effect of Lower Limbs Somatosensation on Linear Motion Perception (하지 체성 감각이 선형 운동 지각에 미치는 영향)

  • Yi, Yong-Woo;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.686-693
    • /
    • 2007
  • To perceive body movement, the nervous system uses multi-sensory cues such as vision, vestibular signals, and somatosensation. Among the multi-sensory modality, the previous researchers reported that the lower limb somatosensation plays an important role on maintaining postural balance. In this study, we examined the contribution of somatosensory cues to linear motion perception by measuring the detection threshold of the direction of linear motion with and without lower limb somatosensory constraints. Six healthy male volunteers participated in randomly ordered 33 single sinusoidal acceleration trials with the stimulus at 0.25Hz with peak magnitude ranged from 0 to 8mG. After each stimulus, subjects reported their perceived direction of motion by button press. Results showed that the reduced lower limb somatosensation significantly increased perception threshold. Without constraints, mean threshold was $0.82{\pm}0.23mG$, while it was $1.23{\pm}0.35mG$ with reduced lower limb somatosensation. The results suggest that without visual cues, perception of the movement direction strongly depends on the lower limb somatosensory information.