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The peripheral and central mechanisms underlying itch
Jae Seung Lee#, Jasmin Sanghyun Han#, Kyeongho Lee, Juwon Bang & Hyosang Lee*

Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea

Itch is one of the most distressing sensations that substantially 
impair quality of life. It is a cardinal symptom of many skin 
diseases and is also caused by a variety of systemic disorders. 
Unfortunately, currently available itch medications are 
ineffective in many chronic itch conditions, and they often 
cause undesirable side effects. To develop novel therapeutic 
strategies, it is essential to identify primary afferent neurons 
that selectively respond to itch mediators as well as the central 
nervous system components that process the sensation of itch 
and initiate behavioral responses. This review summarizes 
recent progress in the study of itch, focusing on itch-selective 
receptors, signaling molecules, neuronal pathways from the 
primary sensory neurons to the brain, and potential decoding 
mechanisms based on which itch is distinguished from pain. 
[BMB Reports 2016; 49(9): 474-487]

INTRODUCTION

Pruritus, or itch, is a sensation that provokes scratching or the 
desire to scratch (1). Chronic itch is a major distressing symptom 
associated with many diseases of dermatological, systemic, 
neurological, or psychogenic origin (2, 3). For example, extreme 
itch is a cardinal symptom of atopic dermatitis, which affects an 
estimated 17% of the world’s population, primarily infants and 
children in urban areas and developed countries (4, 5). Itch is 
also a common symptom associated with dry skin in the elderly 
population, experienced by 30-60% of the elderly (6). Pruritus 
often arises as a side effect of medications and therapies, leading 
many patients to discontinue treatment. For example, ∼30% of 
African malarial patients refuse to take the anti-malarial drug 
chloroquine because of unbearable itch (7, 8). Chronic itch 
sufferers frequently cause self-harm through uncontrollable 
itch-scratch cycles.

Despite the presence of evident clinical significance, our 
knowledge about etiology and neurobiology of itch is far from 
complete. In order to develop new and highly selective 
treatments for a wide variety of persistent itch conditions, we 
must understand the underlying peripheral and central 
mechanisms of acute and persistent itch. This review sum-
marizes current knowledge of the molecular and cellular 
mechanisms underlying itch in the primary afferents and spinal 
cord and highlights the anatomical structures in the brain that 
are involved in the sensation and modulation of itch. 

PRURICEPTIVE PRIMARY AFFERENTS 

Pruritogens (itch-causing compounds) are produced endo-
genously, introduced from the environment, or delivered as 
medications (9-11). They bind to specific receptors expressed 
in free nerve endings of primary sensory neurons innervating 
the skin, cornea, and mucous membranes. Activation of 
itch-specific receptors leads to induction of receptor potentials, 
which, in turn, are transformed into action potentials in nerve 
endings. The electrical signals travel alongside the primary 
sensory neurons to reach the central terminals innervating the 
dorsal horn of the spinal cord or the trigeminal subnucleus 
caudalis (Vc) (Fig. 1). 

In the past decade, significant progress has been made in 
understanding the peripheral mechanisms of itch. Molecular 
and mouse genetic approaches have identified itch-sensitive 
receptors and specific molecular markers that label pruriceptive 
neurons and also revealed potential drug targets for treating 
itch. In addition, in vivo extracellular recordings have 
identified sensory nerve fibers and spinal cord neurons that 
can be activated by cutaneous pruritogens. Together with 
human psychophysical studies, these techniques have 
underscored the strong correlation between neuronal activity 
and itch sensation. 

Itch can be classified into two categories, histaminergic and 
nonhistaminergic, according to the degree of responsiveness to 
histamine (9). Histamine, the best-studied itch substance, is a 
bioactive amine released by mast cells and epithelial cells (12, 
13). Intradermal application of histamine produces intense 
itch, with a flare around the application site (14, 15). Histamine 
binds to specific receptors in the plasma membrane, such as 
the H1 and H4 receptors, leading to the activation of 
downstream target molecules within sensory neurons, 
including G protein, phospholipase C, phospholipase A2, 
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Fig. 1. Itch signaling pathway. Schematic illustrating the transmission of itch from the primary sensory neurons to the brain. Itch stimuli 
(pruritogens) activate itch-sensing neurons in the dorsal root ganglion (DRG) that innervate the skin, which then stimulate second-order 
neurons in the spinal cord and multiple brain regions. Indicated in the tables are pruritogens, itch-selective molecules and receptors 
expressed in the primary sensory neurons and spinal cord, and brain regions activated by cutaneous application of a pruritogen. STT, 
spinothalamic tract; SPA, spino-parabrachio-amygdaloid pathway; PFC, prefrontal cortex; SMA, supplementary motor area; PMC, premotor 
cortex; M1, primary motor cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; CC, cingulate cortex; IC, insular 
cortex; BG, basal ganglia; GRP, gastrin-releasing peptide; GRPR, gastrin-releasing peptide receptor; BNP, B-type natriuretic peptide; NPRA, 
natriuretic peptide receptor A; NK-1, neurokinin-1; H1, histamine H1 receptor; PLC3, phospholipase C 3; PLA2, phospholipase A2; 5-HT, 
5-hydroxytryptamine (serotonin); 5-HT-2, 5-HT receptor subtype 2; PAR2, protease-activated receptor 2; Mrgpr, Mas-related G-protein-coupled 
receptor; ET-1, endothelin-1; ETA, endothelin-1 receptor A; BAM8-22, bovine adrenal medullary peptide 8-22.

12-lipoxygenase, and the capsaicin receptor TRPV1 (16-19). It 
has been shown that phospholipase 3 (PLC3) mediates 
increase in intracellular calcium level in primary sensory 
neurons elicited by activation of the histamine H1 receptor 
(17). Mice deficient in PLC3 showed a significant defect in 
scratching behavior elicited by histaminergic pruritogens, 
including histamine, a selective H1 agonist histamine- 
trifluoromethyl toluidine, and the mast cell activator com-
pound 48/80 (17). Histamine-evoked electrophysiological and 
behavioral responses are substantially reduced by genetic 
deletion of TRPV1 in mice or by specific inhibitors targeting 
molecules in the histamine signaling pathway (18, 20-22). 
Mice lacking TRPV1, however, exhibited normal scratching 
behavior in response to other pruritogens, such as 
endothelin-1 (ET-1) or 5-HT; whereas, chemical ablation of the 
central branch of TRPV1＋ neurons leads to a remarkable 
deficit in scratching in response to those pruritogens as well as 
histamine, suggesting that TRPV1＋ neurons are able to detect 
both histaminergic and nonhistaminergic pruritogens (17, 22).

In recent years, nonhistaminergic itch has been a main focus 
of itch research because many chronic itch conditions are not 
readily alleviated by antihistamine. Cowhage (Mucuna pruriens) 
is a tropical legume that evokes intense itch as well as 
pricking, stinging, and burning sensations in humans and 
scratching in monkeys and mice (23-30). As cowhage-evoked 
itch is not diminished by antihistamine, it has been the 
preferred tool for exploring neuronal mechanisms of 
nonhistaminergic itch. When cowhage spicules are inserted 
into the skin, the cysteine protease mucunain is released and 
diffuses to reach nearby nerve endings of primary sensory 
neurons in the epidermis, thus activating protease-activated 
receptor (PAR) 2 and 4 (23, 31, 32). PARs, members of the G 
protein-coupled receptor superfamily, are activated by 
synthetic peptides that match the sequence of the tethered 
ligands at the receptor’s N-terminus, including Ser-Leu-Ile-Gly- 
Arg-Leu-NH2 (SLIGRL) (33). Cutaneous application of SLIGRL 
elicits scratching behavior in animals (34). PAR2 and tryptase, 
the endogenous PAR2 agonist, are markedly increased in the 
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skin of atopic dermatitis patients (35).
A large family of sensory neuron-specific G protein-coupled 

receptors known as Mas-related G protein-coupled receptors 
(Mrgprs) plays a key role in detecting nonhistaminergic 
pruritogens (36). MrgprA3 is expressed in a tiny subset of 
sensory neurons (4-5%) classified as peptidergic C-fibers (37). 
It has been identified as a receptor for a pruritic antimalarial 
medication, chloroquine, which evokes intense itch in 
humans, particularly those of African descent (7, 38). In vivo 
extracellular recordings reveal that MrgprA3＋ neurons are not 
only sensitive to chloroquine but also to histamine, bovine 
adrenal medulla 8-22 (BAM8-22), cowhage spicules, and even 
the pungent vanilloid compound capsaicin. BAM8-22, a 
proteolytic cleavage product of proenkephalin A, provokes 
itch in humans, usually accompanied by pricking, stinging, 
and burning sensations (39, 40). Mice ablated of MrgprA3＋ 
neurons exhibited a substantial deficit in scratching behavior 
evoked by diverse pruritogens, such as histamine, BAM8-22, 
SLIGRL, -methyl-5HT, ET-1, as well as chloroquine (38). 
However, in ablated mice, normal response to -alanine, a 
supplement for muscle building that causes itch sensations in 
humans and scratching behavior in mice was noted (41). 
These findings suggest that MrgrpA3＋ sensory neurons are 
able to detect diverse pruritogens, and a different population 
of neurons mediates -alanine-evoked itch. 

In fact, MrgprA3 is highly co-expressed with another Mrgpr, 
MrgprC11, which has been identified as a receptor for pruritic 
peptides such as BAM8-22, SLIGRL, and the cysteine protease, 
cathepsin S (38, 42, 43). Mice lacking a cluster of Mrgprs, 
including MrgprC11, exhibit a substantial deficit in scratching 
behavior to these pruritogens, but their response to other 
pruritogens, such as histamine and compound 48/80, remains 
normal (38, 42-44). Since mice lacking PAR2 exhibit a normal 
response to subcutaneously injected SLIGRL, MrgprC11 is 
contemplated to be a major contributor to SLIGRL-evoked itch 
(42).

MrgprD has been identified as a receptor that is specifically 
activated by -alanine (45), and mice lacking MrgprD fail to 
exhibit scratching after intradermal injection of -alanine (41). 
Since MrgprA3 and MrgprD are expressed in distinct 
subpopulations of C-fibers in mice, MrgprA3＋ neurons are 
unresponsive to -alanine in in vivo extracellular recordings, 
and mice ablated of MrgprA3＋ neurons are normal in 
response to -alanine, these receptors are apparently expressed 
in two distinct populations of pruriceptive neurons (46, 47).

It has been reported that TRPA1 is one of the key players in 
Mrgpr-mediated itch (48). For example, chloroquine and 
BAM8-22 activate a subset of TRPA1-expressing sensory 
neurons. Cultured sensory neurons isolated from TRPA1- 
deficient mice exhibit a remarkable reduction in calcium 
responses evoked by chloroquine and BAM8-22, but their 
histamine-evoked responses are unaffected. Conversely, 
sensory neurons from TRPV1-deficient mice respond normally 
to chloroquine and BAM8-22, but their histamine-evoked 

responses are substantially reduced. Thus, TRPV1 and TRPA1 
are recruited to serve different types of itch, even though 
TRPA1＋ cells are known to express TRPV1 (49). Mice lacking 
TRPA1 exhibit almost no scratching behavior upon 
subcutaneous injection of chloroquine and BAM8-22, but they 
show normal scratching in response to -methyl-5HT, 
indicating that their deficit is specific to certain pruritogens. 

ET-1, a potent vasoconstriction peptide, is produced by mast 
cells, endothelial cells, and keratinocytes (50, 51). ET-1 elicits 
the sensation of itch accompanied by flare reactions in 
humans and scratching in mice (52-54). A monoamine 
neurotransmitter, 5-HT, also causes itch by activating the 
5-HT-2 receptor after cutaneous application (55-58).

It is likely that itch is mediated by several different 
subpopulations of primary sensory neurons. Some itch-causing 
substances activate mostly overlapping populations of neurons, 
since their specific receptors are expressed in the same neurons 
(e.g., chloroquine vs. BAM8-22; MrgprA3 vs. MrgprC11), and 
other pruritogens activate distinct populations (e.g., 
chloroquine vs. -alanine; MrgprA3 vs. MrgprD). The number 
of itch-responding sensory neurons and extent of overlap 
between responding populations are variable, depending on 
the type of pruritogen, method of delivery, and species. 

A substantial body of evidence indicates that the vast 
majority of pruritogen-sensitive sensory neurons respond not 
only to pruritogens but also to noxious mechanical, thermal, 
and/or chemical stimuli (27, 57, 59-61). In human micro-
neurography, for example, intradermal injection of histamine 
preferentially activates a subset of mechanically insensitive 
C-fibers (C-MIA) over a time-course matching the psychophysical 
sensation of itch, whereas topical application of cowhage 
spicules activates a subset of mechano-heat-sensitive C-fibers 
(CMH) (26, 27, 62-64). Most itch-sensitive C-MIAs and CMHs 
are also activated by intradermal injection of capsaicin. Thus, 
histamine and cowhage activate two distinct subpopulations of 
primary sensory neurons, which also respond to noxious 
stimuli in humans. In nonhuman primates, however, both 
histamine and cowhage activate a subset of CMHs that also 
respond to noxious stimuli, indicating activation of 
overlapping population of neurons (also respond to noxious 
stimuli) by pruritogens (27). In line with this finding, native 
cowhage spicules and heat-inactivated spicules containing 
histamine applied to the mouse skin activate a subset of CMH; 
over 60% of histamine-sensitive CMH also respond to 
cowhage (30). Conversely, half of the cowhage-responsive 
fibers are also activated by histamine. For the reason that these 
histamine- and cowhage-sensitive neurons also respond to 
noxious stimuli, they represent partially overlapping sub-
populations of nociceptors. Other studies have also shown that 
diverse pruritogens activate partially overlapping subpopulations 
of nociceptors in rodent trigeminal and dorsal root ganglia (38, 
54, 65-67). 
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PRURICEPTIVE NEURONS IN THE SPINAL CORD AND 
SPINAL TRIGEMINAL NUCLEUS

Itch-sensitive primary sensory neurons release specific 
neurotransmitters onto postsynaptic neurons in the spinal cord 
and Vc, where the itch signal is further processed by local 
excitatory and inhibitory neurons as well as descending 
synaptic inputs from the brain, before the itch information is 
transmitted to supraspinal regions, such as the thalamus and 
parabrachial nucleus (PB), via ascending neuronal pathways 
(Fig. 1). Projection neurons comprise only a small fraction of 
the neurons in the dorsal horn (∼5% of lamina I neurons in 
the L4 segment of the rat spinal cord), and many of them send 
collateral projections to synapse with multiple brain regions 
(68). 

In conjunction with glutamate and substance P, gastrin- 
releasing peptide (GRP) has been considered as a key 
neuropeptide transmitter that is released from either the central 
terminals of itch-sensitive primary sensory neurons or local 
excitatory neurons, activating dorsal horn neurons that express 
the GRP receptor (GRPR) (11, 69-72). GRP is a homolog of 
bombesin, a 14-amino acid peptide originally isolated from 
frog skin; intrathecal or intradermal injection of bombesin 
provokes scratching in animals (71, 73-76). Mice lacking 
GRPR or ablated of GRPR＋ neurons display a substantial 
reduction in scratching behavior in response to a variety of 
pruritogens, such as compound 48/80, SLIGRL, and 
chloroquine, but normal responses to painful stimuli, 
indicating that GRPR＋ neurons are selectively involved in itch 
signaling (69, 76). Consistent with this finding, mice deficient 
in the testicular orphan nuclear receptor exhibit a 
near-complete absence of scratching behavior in response to 
histamine, -Me-5-HT, and chloroquine (77). In these mice, 
∼80% of GRP＋ or GRPR＋ neurons are ablated, suggesting the 
importance of GRP signaling in itch responses (77).

B-type natriuretic peptide (BNP, also known as natriuretic 
polypeptide B) is another itch-specific neurotransmitter 
expressed in a subset of primary sensory neurons that 
co-express MrgprA3, TRPV1, and PLC3 (71). It is released 
from the central terminals of these neurons to activate the 
postsynaptic second-order neurons in the spinal cord. Mice 
lacking in BNP exhibit greatly attenuated responses to a range 
of pruritic agents but retain normal reactions to thermal, touch, 
and proprioceptive stimuli. Conversely, intrathecal injection of 
BNP induces robust scratching in mice. Consistent with these 
findings, ablation of spinal interneurons expressing NPRA, a 
receptor for BNP, leads to a major attenuation in itch 
responses to intradermal injection of histamine or intrathecal 
administration of BNP, but normal reactions to other 
somatosensory stimuli. Thus, BNP signaling plays a key role in 
itch transmission. It has been proposed that NPRA＋ neurons 
are the elements upstream of GRPR＋ neurons in itch- 
transmitting circuits (71).

In order to determine the neural basis of itch processing in 

the spinal cord, in vivo single-unit recordings have been 
performed from the spinal cord and Vc, following application 
of itch stimuli to the skin. The dorsal horn neurons can be 
classified according to their responsiveness to mechano- 
insensitive and noxious mechanical stimuli, into: 1) mechano- 
insensitive (MI), 2) low-threshold, 3) wide dynamic range 
(WDR), and 4) nociceptive-specific (NS) neurons (11, 78-80). 
WDR neurons respond to both innocuous and noxious 
mechanical stimuli, with higher-frequency discharges in 
response to noxious stimuli. 

In vivo recordings have shown that the vast majority of 
itch-sensitive neurons in the spinal cord and Vc are WDR and 
NS neurons, and only a few are MI neurons. Most of these 
neurons are nociceptors that also respond to noxious stimuli. 
For example, in nonhuman primates, histamine and cowhage 
activate two mostly separate subpopulations of neurons in the 
spinal cord, all of which are either WDR or NS neurons that 
also respond to noxious mechanical or thermal stimuli, 
indicating that histaminergic and nonhistaminergic itch are 
carried by two separate subpopulations responding to 
nociceptive stimuli (60, 61, 81). Antidromic mapping has 
revealed that the neurons involved are the spinothalamic tract 
(STT) neurons projecting into the ventrobasal and posterior 
nucleus of the thalamus. Similarly, in rodents, the dorsal horn 
of the spinal cord and Vc contain a number of 
pruritogen-sensitive neurons, mostly WDR and NS neurons 
that also respond to noxious stimuli (11, 54, 57, 65, 82, 83). 
These findings also support the concept that itch information is 
mediated in the spinal cord and Vc by a subset of nociceptive 
neurons responding to noxious stimuli. Only a small fraction 
of itch-sensitive neurons are MI. Previous research in cats has 
identified a small number of histamine-sensitive MI neurons 
from the STT (84). Half of all histamine-sensitive neurons are 
unresponsive to the noxious chemical mustard oil, indicating 
the existence of itch-specific neurons that are insensitive to 
noxious mechanical or chemical stimuli. However, the 
response of CMHs was not examined in the reported study.

It is likely that the vast majority of pruritogen-responsive 
neurons are local interneurons, since only a small subset of 
pruriceptive neurons in the spinal cord and Vc are projection 
neurons that innervate either the thalamus or PB in mice (85). 

NEURAL CODING MECHANISMS OF ITCH AND PAIN

Itch is closely linked to pain, and electrophysiological studies 
have shown that the majority of itch-sensitive neurons are 
nociceptors, thus raising an important question as how itch is 
differentiated from pain. Both itch and pain are complex 
sensory and emotional experiences created by neuronal 
activities in the peripheral and central nervous systems. They 
are detected by a subset of primary afferents in the 
somatosensory system, mainly by slowly conducting 
unmyelinated C-fibers and thinly myelinated A-fibers (9, 29, 
86). The similar sets of receptors and signaling molecules are 
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involved in transducing itch and pain within sensory neurons. 
As such, pruriceptive and noxious stimuli often activate the 
shared populations of neurons. Moreover, alleviation of pain 
can produce a sensation of itch; morphine, for example, 
inhibits pain but causes a sensation of itch in humans and 
scratching behavior in animals (87-89). Conversely, itch is 
temporarily relieved by scratching. Finally, it is apparent that 
both itch and pain elicit unpleasant sensations. However, they 
clearly evoke qualitatively different sensations and behavioral 
responses, suggesting that there should be a mechanism based 
on which itch and pain can be differentiated.

There have been debates on the neural basis of itch 
processing. For many years, itch has been considered as a 
sub-modality of pain in which itch and pain are served by the 
same population of neurons, and the sensation is determined 
by the pattern of neuronal activity; itch is elicited when 
sensory neurons are activated weakly, whereas pain is evoked 
when neurons are strongly activated (9). This so-called 
intensity theory was supported by the experimental finding 
that most of the itch-sensitive neurons also respond to painful 
stimuli. Moreover, high doses of pruritogen produce pain, 
whereas low doses of algogen evoke itch. For instance, 
intradermal injection of a high concentration of histamine 
elicits pain (90, 91). Conversely, capsaicin, which normally 
causes intense burning pain when injected intradermally, 
elicits itch when delivered topically or applied as heat- 
inactivated cowhage spicules coated with capsaicin (28, 
91-95).

Primary afferents and postsynaptic neurons in the spinal 
cord exhibit relatively higher-frequency discharges in response 
to noxious stimuli than do pruritogens (30, 54, 60, 61, 65, 
81-83, 96). For example, capsaicin provokes higher-frequency 
discharges in the trigeminothalamic and STT neurons as 
compared to histamine or cowhage (30, 60, 81, 96). The 
manner in which information contained in the pattern of 
activity is used to produce specific sensation of itch in 
higher-order neurons in the brain remains to be determined. 
There exists experimental evidence that challenges the 
intensity theory. For instance, an itch sensation provoked by 
neuronal or cutaneous electrical stimulation does not 
transform into pain at higher-frequency stimulation (97, 98). 
Also, a specific firing pattern of CMHs does not correlate with 
itch and pain sensation in humans (99). Since these studies 
have focused on primary afferents, it remains unclear whether 
intensity coding is a valid mechanism in the spinal cord and 
brain.

A number of pieces of genetic and behavioral evidence 
support another theory, the “labeled line” theory, in which 
specific populations of neurons are dedicated to serving either 
itch or pain. For example, mice ablated of either MrgprA3＋ 
primary sensory neurons, GRPR＋ neurons in the spinal cord, 
or NPRA＋ neurons in the spinal cord, or mice lacking BNP all 
exhibit a selective deficit in scratching behavior in response to 
a variety of pruritogens, whereas these manipulations have no 

effect on nociception (37, 69, 71). In an elegant genetic 
experiment, TRPV1-knockout mice were engineered to express 
TRPV1 only in itch-sensitive MrgprA3＋ primary sensory 
neurons (37). When capsaicin was applied, these animals 
exhibited only itch-related behaviors without pain-related 
behaviors; even though MrgprA3＋ neurons were found to 
respond to noxious stimuli in electrophysiological recordings. 
To accommodate the discrepancies in the electrophysiological 
and behavioral findings, a new theory, known as “population 
coding” was proposed, in which the sensation of itch is 
elicited by activating “pruriceptive nociceptors” that respond 
to both pruriceptive and noxious stimuli in electrophysiological 
recordings; in contrast, the sensation of pain is elicited by 
noxious stimuli, which activate an additional population 
responding only to noxious stimuli (9, 11). The activity in the 
“nociceptive-specific” population is speculated to prevent or 
mask itch transmission by the pruriceptive nociceptors, 
possibly via local inhibitory mechanisms. 

Several lines of evidence support this model. First, selective 
deletion of vesicular glutamate transporter 2 in a subset of 
nociceptive neurons leads to spontaneous scratching and 
capsaicin-evoked itch in mice, suggesting that baseline 
glutamatergic signaling inhibits itch transmission (100, 101). 
Second, activity-dependent silencing of a subset of nociceptors 
using the lidocaine derivative QX-314, followed by activation 
of another subpopulation of nociceptors, elicits scratching 
rather than pain behavior in mice (102). QX-314 permeates 
through activated ion channels such as TRPV1 and inhibits 
neuronal firing by blocking voltage-gated channels inside the 
cell. Finally, selective ablation of inhibitory interneurons 
expressing the transcription factor basic helix–loop–helix 
domain-containing, class B5 (BHLHB5) results in a substantial 
elevation of spontaneous scratching, suggesting a potential 
role for these neurons in suppressing itch transmission by 
pruriceptive nociceptors (103). A recent study has shown that 
transplantation of precursors of cortical inhibitory neurons in 
the spinal cord can rescue the itch-related phenotypes of these 
mice, presumably by restoring inhibitory mechanisms in the 
spinal cord (104). The local circuit involving BHLHB5 neurons 
remains to be determined. 

ITCH PROCESSING IN THE BRAIN

One of the major insights that has emerged from pain studies 
is that chronic pain is a disease not only of the primary sensory 
neurons and spinal cord but also of the brain. Chronic pain 
causes functional and structural alterations in the brain and 
also affects other functions of brain such as emotion, 
motivation, and memory. Therefore, developing an effective 
itch treatment must take into consideration a therapeutic 
strategy targeting the brain. 

Itch is a multidimensional experience that involves 
perception of the sensory and emotional-affective aspects of itch 
as well as an urge to scratch employing the motor system (1). 
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Subject Imaging Stimulus (method) Location Brain region Reference

Healthy PET Histamine 
(Intracutaneous 
injection)

Right forearm SFG(bi), MFG(bi), IFG(R), SMA(bi), PMC(bi), ACC(L), IPL(R), 
Cerebellum(bi)

ref. 125

Healthy PET Histamine (skin prick) Right forearm PFC(L), SMA(L), PMC(L), M1(L), S1(L), PC(SMG(L)) ref. 126
Healthy PET Histamine (skin prick) Right forearm PFC(L), preCG(L), IFG(L), MFG(L) SMA(L), PMC(L), ACC(L), 

PC (postcentral(R) & superior(R))
ref. 105

Healthy fMRI Histamine (skin prick) Right foot periACC(bi), aIC(bi), pIC(L), BG (caudate(bi), ventral caudate(R), 
ventral putamen(R)), TH(bi)

ref. 112

Healthy fMRI Histamine (skin prick) Left forearm IFG(R), IC(R), preCG(L)↓, MFG↓, preACC↓, subACC↓, cerebellum↓ ref. 137
Healthy fMRI Histamine (skin prick) 

at 25oC (skin)
Right forearm dlPFC(bi), preSMA(R), aIC(L), iPC(bi), TH(bi), OFC(L)↓, MFC(R)↓, 

M1(L)↓, dACC(R)↓
ref. 148

Healthy PET Histamine 
(iontophoresis)

Right foot dlPFC(bi), PMC(R), CC(L), aPC(R), pPC(R), TH(L) ref. 110

Healthy fMRI Histamine 
(iontophoresis)

Left wrist preSMA(L), ACC(R), PCC(R), aIC(bi), pIC(L), BG(L) ref. 107

Healthy PET Histamine 
(iontophoresis)

Left hand SFG(L), preCG(R), postCG(R), MCG(R) ref. 127

Healthy fMRI Histamine 
(iontophoresis)

Right forearm M1(L), S1(L), precuneus(L), IPL(L), SPL(L) ref. 124

Healthy fMRI Histamine 
(microdialysis)

Left forearm SFG(R), MFG(bi), IFG(L), preCG(bi), SMA(bi), PMC(bi), S1(R), S2(bi), 
aMCC(bi), precuneus(R), IPL(bi), SPL(R), aIC(bi), BG (caudate body(bi), 
caudate tail(bi)), TH(bi), cerebellum, subACC(bi)↓, amygdala(bi)↓

ref. 106

Healthy fMRI Cowhage Right forearm PMC(L), S1(L), S2(bi), PCC(bi), ACC(L), precuneus(L), IC(bi), SMG(bi), 
angular gyrus(bi), hippocampus(L), putamen(bi), TH(bi), cerebellum(L) 

ref. 113

Healthy fMRI Histamine 
(iontophoresis) & 
cowhage

Right forearm SFG(R), OFC(L), IFG(R), SMG(L), S1(L), S2(R), ACC(bi), PCC(bi), IC(bi), 
angular gyrus(L), IPL(L), SPL(L), precuneus(bi), BG (putamen(bi), 
lateral globus pallidus(L)), Amygdala(bi), TH(L)

ref. 113

Healthy fMRI Allergen (skin prick) Right foot mOFC(L), middle OFC(L), lOFC(L), SMA(L), PMC(L), M1(L), S1(L), 
periACC, subACC(bi), pPC(L), BG (caudate(bi)), TH(R)

ref. 112

Healthy fMRI Electrical stimulus Left wrist PFC(R), SMA(R), PMC(R), S2(bi), ACC(L), PCC(L), precuneus(R), IC(bi), 
aPC(bi), pPC(R), TH, cerebellum(L) 

ref. 111

AD (no active 
phase)

PET Histamine 
(iontophoresis)

Left hand SFG(bi), MFG(R), IFG(bi), preCG(bi), postCG(R), IC(L), PC (SMG(R)), 
BG (pallidum(L)), TH(R), cerebellum(bi)

ref. 127

AD fMRI Histamine 
(iontophoresis)

Right forearm 
(LS)

dlPFC(bi), IPFG(L), SFG(bi), MFG(R), IFG(L), PMC(bi), vACC(bi), 
dACC(bi), vPCC(bi), dPCC(bi), RSC(bi), precuneus(bi), aIC(R), pIC(R), 
IPL(R), SPL(R), BG (caudate(L), putamen(L))

ref. 124

AD fMRI Histamine (skin prick) 
at 25oC (skin)

Right forearm 
(NLS)

PFC↓, SMA↓, PMC↓, S1↓, S2↓, CC↓, IC↓, BG↓ ref. 149

AD fMRI Histamine (skin prick) 
at 25oC (skin)

Right forearm 
(LS)

*PFC⇅, PMC↓, S1↓, S2↓, CC↓, IC↑, *PC⇅, BG↑ ref. 149

ESRD fMRI Histamine 
(iontophoresis)

Right forearm OFC(L), SFG(R), MFG(R), IFG(L), S1(L), ACC(L), PCC(bi), paracingulate 
gyrus(L), precuneus(bi), SPL(bi), SMG(L), angular gyrus(L)

ref. 114

ESRD fMRI Cowhage Right forearm PMC(bi), M1(R), S1(L), S2(L), ACC(bi), PCC(R), precuneus(bi), IC(L), 
angular gyrus(L), SMG(L), BG (putamen(L)), TH(R)

ref. 114

Brain imaging studies have shown that cutaneous application of pruritogens (cowhage and histamine) or electrical stimulation lead to activity 
changes in multiple brain regions of healthy subjects and chronic itch patients (R, right hemisphere; L, left hemisphere; bi, both hemispheres). 
Unless otherwise indicated with (↓), all regions were activated during pruritic stimulation. *Mixed activity (both activation and deactivation) was 
found within a region. PFC, prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; mOFC, medial orbitofrontal cortex; 
middleOFC, middle orbitofrontal cortex; lOFC, lateral orbitofrontal cortex; MFC, medial frontal cortex; SFG, superior frontal gyrus; MFG, middle 
frontal gyrus; IFG, inferior frontal gyrus; iPFG, inferior prefrontal gyrus; preCG, precentral gyrus; postCG, postcentral gyrus; SMA, supplementary 
motor area; preSMA, presupplementary motor area; PMC, premotor cortex; M1, primary motor cortex; S1, primary somatosensory cortex; S2, sec-
ondary somatosensory cortex; CC, cingulate cortex; ACC, anterior cingulate cortex; dACC, dorsal anterior cingulate cortex; vACC, ventral anterior 
cingulate cortex; preACC, pregenual anterior cingulate cortex; periACC, perigenual anterior cingulate cortex; subACC, subgenual anterior cingulate 
cortex; aMCC, anterior midcingulate cortex; MCG, midcingulate gyrus; PCC, posterior cingulate cortex; dPCC, dorsal posterior cingulate cortex; 
vPCC, ventral posterior cingulate cortex; RSC, restrosplenial cingulate cortex; PC, parietal cortex; aPC, anterior parietal cortex; pPC, posterior parie-
tal cortex; iPC, inferior parietal cortex; SMG, supramarginal gyrus; IPL, inferior parietal lobe; SPL, superior parietal lobe; IC, insular cortex; aIC, ante-
rior insular cortex; pIC, posterior insular cortex; BG, basal ganglia; TH, thalamus; AD, atopic dermatitis; ESRD, end-stage renal disease; LS, lesional 
skin; NLS, nonlesional skin.

Table 1. Brain activity upon itch stimulation
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Subject Imaging Itch (suppression) Location Brain region Reference

Healthy PET Histamine - iontophoresis 
(Cold pain (5oC))

Right foot (itch)
Left foot (pain)

S2(bi), TH(R), Midbrain(R) (including PAG) ref. 110

Healthy fMRI Histamine - iontophoresis 
(Passive scratching)

Right hand MFC(bi), LFC(bi), PMC(bi), M1(bi), S1(bi), S2(bi), 
subACC(bi), preACC(bi), dPCC(bi), vPCC(bi), aIC(bi), 
pIC(bi), PC(bi), BG (putamen(bi)), TH(bi), cerebellum(bi)

ref. 128

Healthy fMRI Cowhage i 
(Passive scratching)

Right forearm S1, S2, PCC, precuneus, hippocampus, subthalamic 
nucleus, vlPFC↓, OFC↓, M1↓, ACC↓, IC↓, TH↓, 
BG (Putamen)↓

ref. 129

Healthy fMRI Cowhage 
(Active scratching)

Right forearm dlPFC, SMA, PMC, M1, S1, S2, ACC, PCC, precuneus, 
BG (Caudate), TH, cerebellum, vlPFC↓, OFC↓, frontal 
medial cortex↓, ACC↓, IC↓, NAc↓, hippocampus↓, 
amygdala↓, cerebellum (anterior lobe, culmen)↓, 
midbrain (VTA, PAG, Dorsal nucleus of the raphé)↓

ref. 129

Healthy fMRI Cowhage 
(Active scratching)

Right forearm dmPFC(R), lPFC(bi), PMC(R), M1(bi), S1(bi), ACC(R), 
MCC(bi), IC(bi), PC(bi), TH(bi), cerebellum(bi)

ref. 130

Healthy fMRI Histamine - iontophoresis 
(Butorphanol)

Right forearm subACC(R) ref. 150

Healthy fMRI Cowhage (Butorphanol) Right forearm S1(L)↓, PCC(L)↓, IC(R)↓, TH(L)↓, 
cerebellum (culmen(L))↓

ref. 150

AD, psoriasis, 
ESRD

fMRI Cowhage
(Active scratching)

Right forearm dmPFC(L), vmPFC(L), lPFC(bi), SMA, PMC(bi), M1(L), S1(L), 
ACC(R), MCC(R), precuneus(R), IC(bi), PC(bi), TH(bi)

ref. 130

AD *fMRI Allergen - skin prick (VAC) Left forearm (NLS) aIC(R)↓, NAc(R)↓, putamen(R)↓, globus pallidus(R)↓, 
caudate(R)↓

ref. 151

AD **fMRI Allergen - skin prick (VAC) Left forearm (NLS) MFG(R)↓, PMC(R)↓, M1(bi)↓, S1(bi)↓, S2(R)↓, 
PCC(L)↓

ref. 151

Activity changes in brain regions during suppression of itch transmission by cold block, scratching (active scratching by subjects or passive scratch-
ing by experimenters), butorphanol (a mixed action opioid), or acupuncture (R, right hemisphere; L, left hemisphere; bi, both hemispheres). Unless 
otherwise indicated with (↓), all regions were activated during itch suppression. Brain imaging was performed following a VAC application to the 
itchy skin when the sensation of itch was either increasing* or at peak**. dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsal part of medial pre-
frontal cortex; vmPFC, ventral part of medial prefrontal cortex; lPFC, lateral prefrontal cortex; vlPFC, ventral lateral prefrontal cortex; OFC, orbito-
frontal cortex; MFG, middle frontal gyrus; MFC, medial frontal cortex; LFC, lateral frontal cortex; SMA, supplementary motor area; PMC, premotor 
cortex; M1, primary motor cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; ACC, anterior cingulate cortex; preACC, 
pregenual anterior cingulate cortex; subACC, subgenual anterior cingulate cortex; MCC, midcingulate cortex; PCC, posterior cingulate cortex; 
dPCC, dorsal posterior cingulate cortex; vPCC, ventral posterior cingulate cortex; IC, insular cortex; aIC, anterior insular cortex; pIC, posterior in-
sular cortex; NAc, nucleus accumbens; PC, parietal cortex; BG, basal ganglia; TH, thalamus; VTA, ventral tegmental area; PAG periaqueductal gray; 
AD, atopic dermatitis; ESRD, end-stage renal disease; NLS, nonlesional skin; VAC, verum acupuncture.

Table 2. Brain activity during itch suppression

The perception of itch occurs in the brain by interpreting the 
neuronal activities stemming from projection neurons in the 
spinal cord and Vc that receive itch signals from pruriceptive 
primary afferents.

Our current knowledge on itch processing in the brain is 
derived from a small number of brain imaging studies 
performed on human subjects, which have utilized techniques 
such as positron emission tomography, functional magnetic 
resonance imaging, and magnetoencephalography. Itch was 
produced in healthy subjects by histamine, cowhage, or 
electrical stimulus delivered locally to the skin, leading to 
increased or decreased cerebral activity as well as the 
sensation of itch (Table 1). A few studies focused on itch 
processing in the brain of chronic itch patients suffering from 
atopic dermatitis or end-stage renal disease (ESRD), and other 
studies tested cerebral activity during suppression of itch 
(Table 2). 

As mentioned above, itch-mediating projection neurons in 
the spinal cord and Vc are a small subset of WDR and NS 
neurons that also respond to noxious stimuli. Thus, it is highly 
likely that itch and pain share common neuronal pathways to 
and within the brain. Consistent with this idea, brain regions 
activated by pruritic and noxious stimuli overlap extensively 
(105-107). Pruriceptive STT neurons send their axons across 
the midline of the spinal cord and ascend within the 
anterolateral column pathway to reach the contralateral 
thalamus, particularly within the ventroposterior medial or 
posterior thalamic nuclei (60, 61, 81, 84, 108). As is true for 
pain, itch information may be further relayed to the primary 
(S1) and secondary (S2) somatosensory cortices, insular cortex 
(IC), and cingulate cortex (108, 109). Multiple studies have 
demonstrated thalamus as one of the prominent regions, which 
is consistently activated by histamine and cowhage (106, 
110-113). Interestingly, cowhage elicits more extensive 
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activation in the thalamus as compared to histamine, as well 
as in other regions such as the IC, claustrum, globus pallidum, 
and putamen, consistent with the finding that cowhage- 
responsive STT neurons in nonhuman primates innervate 
larger areas within the thalamus than do histamine-responsive 
STT neurons (81, 113). Overall, both the pruritogens activate 
mostly overlapping regions. The S1 and S2 are specialized for 
receiving sensory input and are thought to participate in 
processing the sensory-discriminative aspect of itch. Since 
activity in the S1 is positively correlated with the intensity of 
an itch stimulus, this region is speculated to play an important 
role in interpreting the intensity of stimuli (105). Several 
studies report activation of the S2, but its role in itch is unclear 
(106, 111, 113, 114). 

The IC is known to mediate the integration of autonomic, 
visceral, and limbic functions (115). It is connected to many 
other regions in the brain, including the cingulate gyrus, 
frontal, parietal, and temporal lobes, as well as subcortical 
structures such as the thalamus, amygdala, and brainstem 
(116, 117). Previous studies have shown that the IC can be 
roughly divided into several subregions with unique 
connectivity and functional features (118). The anterior 
agranular insular cortex (aIC) is connected mainly to other 
cortical areas and plays a role in creating awareness of bodily 
states by integrating autonomic and interoceptive information, 
whereas the posterior granular part (pIC) receives nociceptive 
inputs from the primary afferents via the brainstem and 
thalamic nuclei to mediate pain processing (115, 119, 120). It 
has been shown that itch activates both the aIC and pIC (107, 
112). The activity in the aIC is positively correlated with the 
unpleasant sensation of itch, while the activity of the pIC is 
correlated with the intensity of the itch stimulus (105-107, 
111-113). In ESRD patients with chronic itch, bilateral 
activation of the IC is observed even in the absence of 
pruritogen stimulation (114).

The cingulate cortex is one of critical brain regions 
contributing to the processing of the affective component of 
pain (121). For example, the anterior cingulate cortex (ACC) is 
activated upon anticipation or response to acute noxious 
stimulus or during chronic pain (122). Consistently, surgical 
damage to the cingulate cortex in humans decreases the 
affective response to noxious stimuli, while leaving intact the 
ability to localize the unpleasant stimuli (121, 123). The ACC 
is also activated by itch stimuli, mainly in its dorsal part 
(dACC) as well as in the anterior part of the midcingulate 
cortex (aMCC) (105-107, 110-114, 124). Since electrical 
stimulation of the MCC evokes the motivation to act, the 
dACC/aMCC appears to be associated with recognizing itch 
stimuli and preparing motor behavior (105, 107, 110-112, 
125, 126). Many studies have reported activation of other 
motor-related regions, including the supplementary motor 
area, premotor cortex, primary motor cortex, and cerebellum 
(105-107, 110-114, 124, 126, 127). These regions may play a 
role in recognizing the location of itch stimuli as well as 

organizing and executing motor responses such as scratching 
(105-107, 110-114, 124, 126, 127). Like the S1, activity in 
these regions is correlated with the intensity of the itch 
stimulus (105, 110). Interestingly, scratching the itchy skin also 
elicits activation of S1, S2, cingulate cortex, supplementary 
motor area, premotor cortex, primary motor cortex, and 
cerebellum. The activity is higher when scratching provokes 
pleasure than when it does not (128-130).

In rodents, the majority (∼80%) of projection neurons in the 
superficial dorsal horn of the spinal cord innervate the PB, 
which is connected to the amygdala and hypothalamus and 
also to the IC (131). As described above, in vivo single-unit 
recordings in mice have identified pruriceptive neurons in the 
spinal cord and Vc that project to PB, implicating the 
spino-parabrachio-amygdaloid pathway in itch processing 
(132-134). Brain imaging studies, however, have failed to 
detect activity changes in the PB, probably because most of 
the projection neurons in the spinal cord in humans send their 
axons to the thalamus rather than the PB. 

The amygdala is also one of the key cerebral structures 
participating in the sensation, expression, and modulation of 
pain (133, 134). In particular, the central nucleus of the 
amygdala (CeA) is considered the output nucleus of the 
amygdala and integrates nociceptive information from the 
cerebral cortex and thalamus as well as nociceptive inputs 
from the PB (135). A recent study has shown that inhibition of 
GABAA receptors by bilateral microinjection of bicuculline 
into the rat CeA dramatically increases scratching behavior in 
acute and chronic itch models, suggesting a role for inhibitory 
mechanisms in the CeA in itch modulation (136). Although the 
amygdala appears to be involved in itch processing, its role is 
still unclear, based on its activation in response to a 
combinatorial application of histamine and cowhage in one 
study but inactivated by individual treatment in another study 
(106, 113, 137). 

It has been reported that reversible cold-block or complete 
transection of the upper cervical spinal cord causes a 30-50% 
reduction in the inhibition of ongoing spontaneous firing of 
the dorsal horn neurons caused by scratching in a mouse 
model of chronic dry itchy skin, indicating that supraspinal 
mechanisms are partially involved in itch inhibition by 
scratching (138). Indeed, mosquito allergy-elicited biting 
behavior is inhibited by an intrathecal (2)-adrenoceptor 
antagonist but increased by the catecholaminergic neurotoxin 
6-hydroxydopamine and the -adrenoceptor antagonist, 
indicating that the descending noradrenergic system tonically 
inhibits itch signaling in the spinal cord (139). Conversely, 
serotonergic neurons in the rostral ventromedial medulla 
appear to control itch transmission in the dorsal horn of spinal 
cord by facilitating GRP-mediated signaling (140). On the 
other hand, electrical stimulation of PAG inhibits the spiking 
responses of STT neurons activated by subcutaneous histamine 
(59). A human PET study has demonstrated that application of 
a painfully cold stimulus to histamine-evoked itch increases 
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activity in the PAG, suggesting the possibility of a descending 
inhibitory mechanism of itch in the PAG (110). PAG was 
activated in response to scratching induced by cowhage- 
evoked itch in one study but inactivated in another study (129, 
141). Thus, the role of PAG in itch suppression is still 
disconcerted, and further investigation is necessitated.

CONCLUDING REMARKS

Compared to the extensive research on pain, itch has received 
relatively less attention until recently. However, our knowledge 
about the molecular and neuronal circuit mechanisms of itch 
detection in the skin and itch transmission within the spinal 
cord and Vc has greatly expanded during the past decade. 
Identification of itch-specific receptors and neurotransmitters 
has provided important insights for development of novel 
therapeutic strategies that selectively target itch-mediating 
neurons.

Unfortunately, our current knowledge on the supraspinal 
processing of itch is limited and relies mainly on a small 
number of brain imaging studies. The reported studies have 
revealed that cutaneous pruritogen application activates brain 
regions involved in somatosensory, limbic, and motor-related 
functions, such as S1, the thalamus, ACC, IC, supplementary 
motor area, primary motor cortex, and cerebellum. Since the 
same brain regions are also activated by noxious stimuli, it is 
puzzling to note as how itch is distinguished from pain in the 
brain. Given their distinct sensations and different behavioral 
responses (scratching vs. withdrawal), there should be a 
mechanism by which these two sensory modalities are 
differentiated. One possibility is that a single population 
mediates both itch and pain, using distinct patterns of 
neuronal activation, spike timing, or other mechanisms. 
Another possibility is that the brain regions contain two 
intermingled or closely adjacent subpopulations that are each 
specialized for either itch or pain, but cannot be detected in 
brain imaging studies because of limited spatial resolution. 
Thus, it is essential to study itch in the brain using molecular 
genetic approaches to identify itch-mediating brain regions at 
the level of neuronal circuits and to decipher the neuronal 
circuit mechanism underlying the interrelationship between 
itch and pain. A combinatorial approach of the advanced 
techniques to reveal neuronal circuits, including in vivo 
imaging such as multi-photon microscopy and microendoscopy, 
functional manipulation tools such as optogenetics and 
chemogenetics, and population-specific neuronal tracing 
methods based on pseudorabies and herpes virus, will help us 
to achieve these goals (142-147).
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