• Title/Summary/Keyword: Sensor installation error

Search Result 49, Processing Time 0.024 seconds

A Design of Capacitive Sensing Touch Sensor Using RC Delay with Calibration (캘리브래이션 기능이 있는 RC지연 정전용량 방식 터치센서 설계)

  • Seong, Kwang-Su;Lee, Mu-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.80-85
    • /
    • 2009
  • In this paper, we propose a full digital capacitive sensing touch key reducing the effects due to the variations of resistance and clock frequency. The proposed circuit consists of two capacitive loads to measure and a resistor between the capacitive loads. The method measures the delays of the resistor and two capacitive loads, respectively. The ratio of the two delays is represented as the ratio of the two capacitive loads and is irrelative to the resistance and the clock frequency if quantization error is disregarded. Experimental results show the proposed scheme efficiently reduces the effects due to the variations of clock frequency and resistance. Further more the method has 1.04[pF] resolution and can be used as a touch key.

A Study on the Design and Real-Time Implementation of Robust Sensor Monitoring Device in Explosion Proof Industrial Site (방폭 산업 현장에 강인한 센서 모니터링 장치 설계 및 실시간 구현에 대한 연구)

  • Jeong-Hyun Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.

A Technique for Alignment to True North Based on Camera in Meteorological Installation (풍황 계측 타워 설치시 카메라를 사용한 진북 맞추기 기법)

  • Yoo Neung Soo;Nam Yoo Su;Lee Jeong Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.122-126
    • /
    • 2005
  • A technique for alignment to true north is presented based on synchronized measurements of vision image by a camera and output voltage of wind direction sensor. The true wind direction is evaluated by means of image processing techniques with least square sense, and then evaluated true value is compared with measured output voltage of the sensor. The uncertainty analysis about the component error for the proposed method in practical situation is performed. The proposed technique is applied to real meteorological tower (wind measuring tower) at the Daekwanryung test site. In addition, some uncertainty analysis of this method is presented.

Design of High Speed Spindle for 5-Axis Machining Equipment Equipped with Piezo-Electric Load Sensoring (압전형 부하 센서링이 장착된 5축 절삭가공기의 고속 주축시스템 설계)

  • Choi, Hyun-Jin;Park, Chul-Woo;Jang, Eun-Sil;Kim, Chung-Hyun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, we reviewed the spindle system's motor and bearing and its mode safety for optimal design of a high speed spindle system that exceeds DmN value of 1,500,000. We could verify that it has a separation margin during critical speed by performing critical speed analysis. Also, we have selected an optimal sensoring installation location and actually manufactured & installed the sensor by identifying the stress concentration position in the axial load through finite element analysis to install the built-in piezo electric type load sensor to the spindle housing that can measure and monitor the machining load during high speed rotation of the spindle. Reproducibility is also verified by calibrating the error through the sensor's sensitivity adjustment after comparing the output between the plate dynamoneters and the load sensor to confirm the reproducibility of the load sensor.

A Methodology of Finding the Direction of Lightning Discharge using Loop-type Magnetic Field Sensors (루프형 자계센서를 이용하여 뇌방전이 발생한 방향을 탐지하는 기법)

  • Lee, Bok-Hee;Cho, Chi-Youn;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.63-68
    • /
    • 2014
  • This paper deals with a methodology that applies the time-varying magnetic fields produced by the cloud discharges to find the direction of thunderstorm movement. We investigated the basic performance of the magnetic field measurement system composed of multi-turn loop-type sensors, the differential amplifier and active integrator. As a result, the response characteristics of the magnetic field sensor system to sinusoidal signals was excellent. The frequency bandwidth ranges from about 1 kHz to 500 kHz, the response sensitivity was 0.16mV/nT. In addition, we proposed the algorithm that determines the direction of lightning discharges using the comparison of the output signals of right-angled loop-type magnetic field sensors. The accuracy of the direction finding of lightning discharges is fairly well within the measurement error of less than $5^{\circ}$. The magnetic field measurement system proposed in this work can be used to track the direction of thunderstorm movement.

Polarimetric Fiber-optic Current Transformer using a Spun Fiber (스펀 광섬유를 이용한 편광 분석형 광섬유 전류센서)

  • Park, Hyong-Jun;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • A polarimetric fiber-optic CT has been developed by using a sensing coil made of a length of sun fiber. A Faraday rotator mirror is attached to the end of the sensor coil to double the sensitivity and to suppress the residual linear birefringence effect. From the current measurements, the linear error no more than ${\pm}2[%]$ was obtained. The output of spun fiber sensor coil was compared with those of the twisted- and the flint glass fiber's, and it fumed out to almost 50 times, 2 times more sensitive, respectively.

Comparison of Discharge UV Intensity Due to AR Coating of Optic Lens on Polymer Insulator (광학렌즈 AR 코팅에 따른 폴리머애자에서의 방전 자외선 강도 비교)

  • Kim, Young-Seok;Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Choi, Myeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, the ultraviolet (UV) intensity of polymer insulator was measured using the Anti-Reflective (AR) coating lens on the occurrence of corona discharge. The UV intensity was compared before and after the AR coating. Under the 200-260[nm] of UV lens, the reflection rate before AR coating was 7.5~5.5[%] with 85-89[%] of transmission rate. After AR coating, however, the reflection rate decreased to 1.3~1.22[%] with improved transmission (97.4~97.6[%]). Then, the UV intensity by distance was measured in the polymer insulator. According to the measurement, the UV intensity increased 6.5 times at 37.5[%] of Vm/Vbd with 5[m] of distance. As distance increased, the growth rate declined. As high voltage increased, in addition, AR coating was less effective due to the count error caused by the UV sensor pulse signal overlap. Therefore, it appears that it would be more effective to detect corona discharge with 5[m] or less of distance at diagnosis of power facilities by AR coating and UV sensor sensitivity.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

UHF Sensor Location Optimization for Partial Discharge Signals Detection Method (UHF 센서 위치 최적화로 부분방전 신호 검출 방법)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.409-413
    • /
    • 2014
  • GIS partial discharge that occurred in the UHF band signal is effectively detected by the method to IEC60270 5pc the apparent minimum discharge can be detected over the GIS arrangement of the sensor interior and exterior of the UHF in accordance with the optimized position signal by considering the damping ratio is selected so that the signals can be obtained to be mounted. 362kV, 800kV GIS is installed on the internal and external sensors are UHF band signal attenuation is set by measuring the reference value, but the operation, 170kV case 362kV, 800kV on the basis of the measurement data and to be installed and operated. When 170kV per 1Bay by installing the built-in sensor 1 for detecting a partial discharge signal, But, GIS signal attenuation is large in the case of an internal partial discharge signal is not detected in some cases. Where the attenuation is great UHF signal of the sensor by increasing the quantity of partial discharge signals were acquired to allow relocation. The greater the spacing between the sensor and the sensor is applied simplifies the installation and reduces the cost in terms of maintenance of appropriate optimal position is calculated to detect the partial discharge signal is needed. Thus 170kV GIS signal power attenuation of a partial discharge by measuring the UHF sensor, and by relocating the proper position is calculated in accordance with the sensor signal decay rate and minimize the error of omission in detecting a partial discharge signal was optimized.