• Title/Summary/Keyword: Sensor Network Protocols

Search Result 385, Processing Time 0.026 seconds

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.

Bayesian Statistical Modeling of System Energy Saving Effectiveness for MAC Protocols of Wireless Sensor Networks: The Case of Non-Informative Prior Knowledge

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.890-900
    • /
    • 2010
  • The Bayesian networks methods provide an efficient tool for performing information fusion and decision making under conditions of uncertainty. This paper proposes Bayes estimators for the system effectiveness in energy saving of the wireless sensor networks by use of the Bayesian method under the non-informative prior knowledge about means of active and sleep times based on time frames of sensor nodes in a wireless sensor network. And then, we conduct a case study on some Bayesian estimation models for the system energy saving effectiveness of a wireless sensor network, and evaluate and compare the performance of proposed Bayesian estimates of the system effectiveness in energy saving of the wireless sensor network. In the case study, we have recognized that the proposed Bayesian system energy saving effectiveness estimators are excellent to adapt in evaluation of energy efficiency using non-informative prior knowledge from previous experience with robustness according to given values of parameters.

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

Power Consumption Analysis of Prominent Time Synchronization Protocols for Wireless Sensor Networks

  • Bae, Shi-Kyu
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.300-313
    • /
    • 2014
  • Various Time Synchronization protocols for a Wireless Sensor Network (WSN) have been developed since time synchronization is important in many time-critical WSN applications. Aside from synchronization accuracy, energy constraint should also be considered seriously for time synchronization protocols in WSNs, which typically have limited power environments. This paper performs analysis of prominent WSN time synchronization protocols in terms of power consumption and test by simulation. In the analysis and simulation tests, each protocol shows different performance in terms of power consumption. This result is helpful in choosing or developing an appropriate time synchronization protocol that meets the requirements of synchronization accuracy and power consumption (or network lifetime) for a specific WSN application.

Research on Energy Efficiency of Routing Protocols in Mobile Sensor Field (이동 센서 환경에서 라우팅 프로토콜에 따른 에너지 효율에 관한 연구)

  • Park, Se-Young;Yun, Dai Yeol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.502-504
    • /
    • 2021
  • The Mobile Ad-hoc Network (MANET) is a representative mobile sensor network. MANET is used in various areas because it consists of sensors composed of moving nodes that do not depend on existing infrastructure networks. In the mobile sensor field, the mobility characteristic plays an important role in the performance of the network. Researches on routing techniques are being actively developed in terms of energy efficiency of the entire network. Clustering-based routing protocols show excellent performance in terms of energy efficiency. In this paper, the energy performance according to routing protocols is compared in the MANET to which the same mobility model is adopted.

  • PDF

Restricted Multi-path Flooding for Efficient Data Transmission in Wireless Sensor Networks (무선 센서 네트워크 상에서 효율적인 데이터 전송을 위한 제한된 다중경로 플러딩)

  • Cho Hyun-Tae;Baek Yun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.534-539
    • /
    • 2005
  • The key in wireless sensor networks, which consist of a number of sensor nodes, is an energy efficiency. Many routing protocols have been proposed for prolonging network lifetime and reducing traffic in wireless sensor networks. Wireless sensor networks usually use wireless ad-hoc network protocols for routing, but these protocols are not well-suited for wireless sensor networks due to many reasons. In this paper, RM-flooding protocol is proposed for reducing routing overhead occurred when packet flooding. The nodes using this routing protocol can consume the limited energy effectively, and exchange information with remote nodes usulg information receiving from multipath. So, RM-flooding prolongs the network's lifetime.

Wireless Sensor Network Protocol based on LEACH Protocol using Fuzzy (Fuzzy를 적용한 LEACH Protocol 기반 무선 센서 네트워크 프로토콜)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.115-121
    • /
    • 2017
  • A wireless sensor network is a network in which nodes equipped with sensors capable of collecting data from the real world are configured wirelessly. Because the sensor nodes are configured wirelessly, they have limited power such as batteries. If the battery of the sensor node is exhausted, the node is no longer usable. If more than a certain number of nodes die, the network will not function. There are many wireless sensor network protocols to improve energy efficiency, among which LEACH Protocol is a typical example. The LEACH protocol is a cluster-based protocol that divides sensor space into clusters and transmits and receives data between nodes. Therefore, depending on how the cluster is structured, the shape of the energy cow may decrease or increase. We compare the network lifetimes of the existing LEACH protocols and the three types of protocols that have been improved using fuzzy methods for cluster selection.

A Survey on Time Synchronization Protocols for Wireless Sensor Networks (무선 센서 네트워크용 시각 동기화 프로토콜의 고찰)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.61-69
    • /
    • 2014
  • Various Time Synchronization protocols considering for the characteristics of WSN(Wireless Sensor Network) have been developed, because a time relationship plays an important role in many WSN applications, as well. Synchronization accuracy as well as constraints of energy should be considered for WSN Time Synchronization protocols, especially. In this paper, I analyze Time Synchronization protocols for WSN after classifying these protocols with a new criteria (i.e. power consumption). So, this method will contribute to evaluating and comparing WSN Time Synchronization protocols in respect of power consumption.

The Comparison of Performance Hierarchical Routing Protocols in Wide Area Sensor Field

  • Park, SeaYoung;Jung, KyeDong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2016
  • Studies have been made for the wireless sensor network protocols by a number of researchers to date. In particular, the studies as to the hierarchical protocol LEACH algorithm was concentrated. Various studies have been derived for the performance of the protocol is based on the LEACH protocol have been made. Improved algorithms have been proposed continuously. On the other hand, The performance comparison and evaluation of the improved algorithm is insufficient. Therefore, we compared the performance for the ML-LEACH (Multi Hop-Layered) and DL-LEACH (Dual Hop-Layered) been derived mainly LEACH. scalability, energy consumption, CH elected, network lifetime were selected as a Performance evaluation items.

Performance Analysis of Hierarchical Routing Protocols for Sensor Network (센서 네트워크를 위한 계층적 라우팅 프로토콜의 성능 분석)

  • Seo, Byung-Suk;Yoon, Sang-Hyun;Kim, Jong-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • In this study, we use a parallel simulator PASENS(Parallel SEnsor Network Simulator) to predict power consumption and data reception rate of the hierarchical routing protocols for sensor network - LEACH (Low-Energy Adaptive Clustering Hierarchy), TL-LEACH (Two Level Low-Energy Adaptive Clustering Hierarchy), M-LEACH (Multi hop Low-Energy Adaptive Clustering Hierarchy) and LEACH-C (LEACH-Centralized). According to simulation results, M-LEACH routing protocol shows the highest data reception rate for the wider area, since more sensor nodes are involved in the data transmission. And LEACH-C routing protocol, where the sink node considers the entire node's residual energy and location to determine the cluster head, results in the most efficient energy consumption and in the narrow area needed long life of sensor network.