• 제목/요약/키워드: Sensor Fault Diagnosis

검색결과 151건 처리시간 0.029초

CNN기반 정규화 리사주 도형을 이용한 전자식 밸브 고장진단알고리즘 (Fault Diagnosis Algorithm of Electronic Valve using CNN-based Normalized Lissajous Curve)

  • 박성미;고재하;송성근;박성준;손남례
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.825-833
    • /
    • 2020
  • Currently, the K-Water uses various valves that can be remotely controlled for optimal water management. Valve system fault can be classified into rotor defects, stator defects, bearing defects, and gear defects of induction motors. If the valve cannot be operated due to a gear fault, the water management operation can be greatly affected. For effective water management, there is an urgent need for preemptive repairs to determine whether gear is damaged through failure prediction diagnosis.. Recently, deep learning algorithms are being applied for valve failure diagnosis. However, the method currently applied has a disadvantage of attaching a vibration sensor to the valve. In this paper, propose a new algorithm to determine whether a fault exists using a convolutional neural network (CNN) based on the voltage and current information of the valve without additional sensor mounting. In particular, a normalized Lisasjous diagram was used to maximize the fault classification performance in the CNN-based diagnostic system.

Fault Diagnosis Method of Voltage Sensor in 3-phase AC/DC PWM Converters

  • Kim, Hyung-Seop;Im, Won-Sang;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.384-390
    • /
    • 2012
  • This paper proposes a fault diagnosis method of the line-to-line voltage sensors in 3-phase AC/DC pulse width modulation (PWM) converters. The line-to-line voltage sensors are an essential device to obtain the information of the grid voltages for controlling the 3-phase AC/DC PWM converters. If the line-to-line voltage sensors are mismeasured by various faults, the voltage sensors can obtain wrong information of the grid voltage. It has an adverse effect on the control of the converter. Therefore, the converter causes the unbalance input AC current and the DC-link voltage ripple in the 3-phase AC/DC PWM converter. Hence, fast fault detection and fault tolerant control are needed. In this paper, the fault diagnosis method is proposed and verified through simulations and experiments.

베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구 (An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier)

  • 이흥주;장영수;강병하
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

  • Wang, Chao;Liu, Xiao;Liu, Hui;Chen, Zhe
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.29-37
    • /
    • 2016
  • Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estimated rotor position and the actual output of the position sensor. Extreme Learning Machine (ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is utilized to design an assembled estimator for the rotor position detection. The data for building the ELM based assembled position estimator is derived from the magnetization curves which are obtained from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at various operating conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG.

전류, 진동 및 자속센서기반 스마트센서를 이용한 기계결함진단 성능비교 (Comparing machine fault diagnosis performances on current, vibration and flux based smart sensors)

  • 손종덕;태성도;양보석;황돈하;강동식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.809-816
    • /
    • 2008
  • With increasing demands for reducing cost of maintenance which can detect machine fault automatically; low cost and intelligent functionality sensors are required. Rapid developments, in semiconductor, computing, and communication have led to a new generation of sensor called "smart" sensors with functionality and intelligence. The purpose of this research is comparison of machine fault classification between general analyzer signals and smart sensor signals. Three types of sensors are used in induction motors faults diagnosis, which are vibration, current and flux. Classification results are satisfied.

  • PDF

Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발 (Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake)

  • 한광진;양이진;허건수
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

미지입력 관측기를 이용한 신형 이산 시스템의 고장 진단 (Fault Diagnosis of Linear Discrete-Time Systems Based on an Unknown Input Observer)

  • 이재혁
    • 전자공학회논문지B
    • /
    • 제31B권2호
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper, an observer for linear discrete systems with unknown inputs is presented. The suggested observer can estimate the system state vector and the unknown inputs simultaneously. As an extension of the observer, a new fault diagnosis observer for linear discrete systems with structured uncertainty is presented. The fault diagnosis observer can detect and identify the actuator and the sensor faults as well. The stability conditionsand the design methods of the each observers are presented and the usability of the observers is shown via numerical examples.

  • PDF

MCSA를 이용한 BLDC 전동기의 고정자 권선 고장 진단 (Winding Fault Diagnosis for BLDC Motor using MCSA)

  • 이대성;양철오;김준영;김대홍;문용선;박규남;송명현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1876-1877
    • /
    • 2011
  • In this paper, a winding fault diagnosis method base on MCSA(Motor Current Signature Analysis) for BLDC motor is proposed. This method is programmed by LabVIEW for winding fault diagnosis. For winding fault diagnosis, two types of winding fault(shorted turn at one pole, shorted turn at two pole in same phase) are put intentionally in on phase. The motor current is collected by hole sensor, and transformed by the Park's transform, and then the Park's Vector Pattern are obtained, Usually this pattern is formed an ellipse, so a proper threshold value of distortion ratio(the ratio of the shortest axis and longest axis of ellipse) is suggested for winding faults diagnosis.

  • PDF

유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현 (Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model)

  • 박태근;곽기석;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF