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Abstract – Fast and accurate fault diagnosis of the position sensor is of great significance to ensure 
the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator 
(SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the 
estimated rotor position and the actual output of the position sensor. Extreme Learning Machine 
(ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is 
utilized to design an assembled estimator for the rotor position detection. The data for building the 
ELM based assembled position estimator is derived from the magnetization curves which are obtained 
from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. 
The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at 
various operating conditions. The results provide a feasible theoretical and technical basis for the 
effective condition monitoring and predictive maintenance of SRWG. 
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1. Introduction 
 
With the increasing concern on the reliability and cost, 

Switched Reluctance Wind Generator (SRWG) has been 
attracting more and more attentions from the wind power 
academia and industry. Unlike the most commonly used 
Doubly Fed Induction Generator (DFIG) and Permanent 
Magnet Synchronous Generator (PMSG) in wind energy 
conversion systems, SRWG has more robust structure as 
there is no winding or magnet on the rotor. In addition, 
each phase is independent of each other in terms of 
structure and electromagnetism. These significant features 
help SRWG possess high reliability and good fault tolerant 
ability, making SRWG a strong candidate for the next 
generation variable speed wind power generators [1-8].  

Although Switched Reluctance Machine (SRM) has a 
robust structure and high fault tolerant ability, it does not 
mean that it is free of fault. The relatively vulnerable parts 
in a SRM are stator windings, power transistors, bearings 
and sensors. There are a number of research works on Fault 
Detection and Diagnosis (FDD) of stator winding, power 
electronics and bearing of SRM [9-13] but very few 
publications concerning the FDD of position sensor [14]. 
Although it is a trend that the position sensor will be 
eliminated with the mature of sensor-less control 
technology [15-19], most SRGs still have position sensors 
in a considerable period of time. When the position sensor 
fails, the system should be able to detect it in the very 

begining and then switch to the backup sensor or execute 
proper system reconfiguration and fault tolerant control. 
Thus the fast and accurate fault diagnosis of the position 
sensor is essential to ensure the reliability as well as sensor 
fault tolerant operation of the SRWG. 

Reference [14] proposed a square wave position edge 
prediction method for the position signal fault diagnosis 
and position faults recovery of SRM. However, the 
position sensor system investigated in this paper is three 
optical encoders based measurement system, which may 
limit the application scope of this approach. Despite few 
investigations on position sensor FDD, the rotor position 
estimation of SRM from which the sensor health status can 
be inferred has been studied a lot [15-28]. One possible 
solution for position sensor FDD in SRM which is widely 
used in control theory community is to extract and analyze 
the residual between the actual output and the estimated 
output if this estimated value is accurate enough [29]. 
Flux-current characteristics method, which is first proposed 
in [18], is the most popular method for rotor position 
estimation in medium and high speed operation of SRM. 
Flux linkage-current-angle relationship data is stored in a 
2D lookup table which is used to estimate the rotor angle. 
The drawback of this method lies in occupation of mass 
software and hardware resources as well as long computing 
time due to table searching and interpolation processing. In 
order to overcome these shortcomings, plenty of nonlinear 
approximation solutions have been developed in the last 
decades based on the basic idea of flux linkage-current-
angle characteristics of SRM. These solutions include 
fuzzy logic [17-21], Back-Propagation (BP) neural 
networks, Radial Basis Function (RBF) neural networks, 
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adaptive neuro-fuzzy inference system [22-25]. The above 
methods substitute fuzzy or neural network models for 
the 2D lookup tables, which may release large amount of 
memory. However, the fuzzy logic rules in the fuzzy 
logic model are massive and require experience to create, 
meanwhile, most artificial neural networks models are 
based on iterative learning algorithm which is time 
consuming and hard to achieve global optimum.  

This paper presents a fault diagnostic approach for 
position sensor in SRWG based on the residual between the 
actual output of the position sensor and the estimated rotor 
position which is obtained from an assembled estimator. 
Section 2 gives the position sensor fault pattern analysis 
of the SRWG. Section 3 presents the procedure of 
magnetization characteristics acquisition via FEA. The 
rotor position estimation of SRWG based on Extreme 
Learning Machine (ELM) is proposed in section 4. 
Section 5 illustrates the fault diagnostic approach for 
position sensor in SRWG based on analysis of the residual. 
The performance of the proposed approach is verified 
under various operating conditions and sensor fault scenarios. 
Section 6 presents the conclusion of this paper. 

 
 

2. Position Sensor Fault Pattern Analysis of 
SRWG 

 
2.1 Position sensor of SRWG 

 
Accurate rotor position information is indispensable for 

the SRWG to determine the conducting phase / phases 
and turn-on / turn-off angles to achieve desired control 
performance. A typical wind power generation system 
configuration with SRG is depicted in Fig. 1, the position 
sensor measures the position angle of high speed shaft of 
the gearbox and feedbacks this signal to the controller of 
the asymmetric half bridge converter. The commonly used 
position sensors are optical encoders, hall-effect sensors 
and magnetic resolvers [14, 30]. 

2.2 Position sensor fault analysis 
 
Owning to the harsh environments most Wind Energy 

Conversion Systems (WECS) usually work in, especially 
for offshore occasions, the mechanical position sensors 
are fragile under long-time extreme temperature, high 
humidity and salt mist conditions. In dusty environment, 
the optical encoders tend to be affected and may lose 
signals, while the hall-effect sensors are more susceptible 
to temperature.  

Moreover, the magnetic resolvers are quite easily 
disturbed by electromagnetic radiation which is abundant 
in the nacelle of WECS. I n addition, the transmission 
channel, the power source and the related modulation and 
measurement circuits of the position signal may also be 
intervened by the external electromagnetic sources.  

Thus the above mentioned factors may eventually 
result in intermittent or permanent faults in the software or 
hardware of the rotor position sensing systems. The false 
signals from the faulty rotor position sensor may affect 
the normal function of the feedback loop and the control 
system of the WECS. The incipient sensor fault could 
influence the power generation capacity of the WECS, 

 
Fig. 1. A typical wind power generation system config-

uration with switched reluctance generator 

 
        (a) 

 

 
        (b) 

Fig. 2. Flux line distribution at different positions: (a) fully 
unaligned position; (b) fully aligned position 
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while more serious sensor faults may lead to catastrophic 
failures of the WECS.  

 
 

3. Magnetization Characteristics Acquisition via 
FEM 

 
Magnetization characteristics, which demonstrate the 

relationship among flux linkage, phase current and rotor 
position, is the foundation for rotor position estimation. 2D 
finite element model of a 7.5kw 8/6 poles four-phase 
SRWG is developed using ANSYS MAXWELL to obtain 
the magnetization characteristics.  

The fully unaligned position is defined as 0°, while the 
fully aligned position is 30°. The distributions of the flux 
line at the fully unaligned and aligned positions are shown 
in Fig. 2. Fig. 3 displays the magnetic curve clusters of 
phase A with an interval of 1.2° in rotor position. As can 
be seen in Fig. 3, the flux linkage rises monotonically 
with the increase of phase current at each position. When 
the phase current reaches to certain extent, the variation 
tendency of the flux linkage is becoming unapparent 
owning to the flux saturation. At each fixed phase current, 
the flux linkage increases while the rotor position rotates 
from the fully unaligned position (0°) to aligned position 
(30°). Near the fully aligned position, the relationship 
between flux linkage and phase current is nonlinear. On 
the other hand, there is a nearly linear relationship 
between flux linkage and phase current near the fully 
unaligned position.  

 
 
4. Rotor Position Estimation of SRWG Based  

on ELM 
 

4.1 Extreme learning machine 
 
 Single hidden layer feedforward neural networks 

(SLFNs) which have universal approximation ability are 
widely used in state estimation of electrical machines. 

Traditional parameter optimization of the SLFNs is based 
on iterative methods. Gradient descend methods, such as 
the most commonly used BP algorithm, are used to guide 
the learning process of parameters tuning iteratively with 
the training data. These methods are usually time-
consuming and hard to get the global optimal solutions. 
ELM is a recently developed novel learning algorithm for 
training the SLFNs [31-33]. The name ‘ELM’ also refers to 
the SLFNs trained by this algorithm. Thus in the following 
parts of this paper, ELM may be either of the two meanings. 
The only preset parameter of ELM is the number of 
hidden layer neurons. There is no need to tune the weights 
and threshold parameters in the learning process of ELM 
algorithm, and the unique optimal parameters can be 
obtained analytically via simple matrix computations. 
Hence it offers significant superiorities in terms of fast 
training speed, easy to implement, good generalization 
ability as well as minimal human involvement.  

ELM has been used in power system applications to 
solve the prediction and state evaluation problems [34-35]. 
The key principle of ELM for rotor position estimation of 
SRWG is given as follows. 

Suppose { } 1, N
i i i=x y  is n sample dataset of a nonlinear 

system, where ni Îx R with [ ]1 2, , , T
i i i inx x x= ¼x , mi Îy R   

with [ ]1 2, , , T
i i i imy y y= ¼y , n, m is the dimension of ix , 

iy , respectively. The goal is to approximate a model in the 
form of, 

 

( ) ( )
1

, 1, ,
K

j i i j i
i

f g b j N
=

×= + = ¼åx β ω x  (1) 

 
where [ ]1 2, , T

i i i inw w w= ¼ω  is the weight vector 
connecting the i th hidden neuron and the input neurons, 

[ ]1 2, , T
i i i inb b b= ¼β  is the weight vector connecting the 

i th hidden neuron and the output neurons, ib  is the 
threshold of the i th hidden neuron, ( )g x  is the activation 
function, K is the number of hidden neurons of ELM. 

The ELM can approximate these N samples with zero 

error means that ( )
1

K

j j
j

f
=

-å x y =0,  
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The above equations can be rewritten in a compact form, 
 

 =Gβ Y  (3) 
 

where  
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Fig. 3. The magnetic curve clusters of the studied SRWG 
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here G  is the hidden-layer output matrix of the SLFN, 
while β  is the output weight matrix, Y  is the target 
matrix. 

The smallest norm least squares solution of the above 
regression system is 

 
 †ˆ =β G Y  

 
where †G  is the Moore-Penrose generalized inverse of 
matrix G . The †G  can be obtained via Singular Value 
Decomposition (SVD).  

Thus the estimated output of the regression system 
( )jf x  can be expressed as, 
 

 †ˆ= =F Gβ GG Y  (5) 
 
The Mean Square Error (MSE) of the regression system 

is, 
 

 2 2 2†1 1
N N

= - = -e F Y GG Y Y  (6) 

 
4.2 Rotor position estimation of SRWG 

 
The voltages and currents of the four phase windings 

will be delivered to a flux linkage calculator to calculate 
the flux linkage of each phase. If the leakage inductance 
between the phases is neglected, the flux linkage of the 
phase k  can be calculated by, 

 

 ( ) ( ) ( )
0

0 , 1, 2, , 4
t

k k k k kt u R i dt ky y= - + = ¼ò  (7) 

 
where uk, Rk, ki  are the phase voltage, phase resistance 
and phase current respectively. Then the current and flux 
linkage will be input to the corresponding ELM position 
estimator. There are four ELM estimators, each of which 
works in its own best estimation region. This will be 
introduced in detail in the next section. 

Offline training and online estimation strategy, which 
may improve the efficiency of the ELM, is used in this 
study. After the training process, all the weights and 
biases parameters of the ELM rotor position estimator 
are determined. These parameters are configured into the 

online ELMs for real time rotor position estimation. 
 
 
5. Position Sensor Fault Diagnosis and Results 

Analysis 
 

5.1 Simulation 
 
The configuration of the studied 7.5kw 8/6 poles four-

phase SRWG system is demonstrated in Fig. 4. The current 
chopping control strategy is deployed in the simulation 
for the current control, the hysteresis band width is ±3A. 
The DC exciting voltage is 120V. Due to the generating 
mode of SRM, the turn-on and turn-off angles are set to 
be 30° and 60°. The nominal rotor speed is 1000 rpm 
while the nominal wind speed is 12m/s. The simulation is 
implemented in Matlab/Simulink® environment. Each 
phase is working on the current chopping mode with the 
reference current 62.5A and the hysteresis band width ±3A. 
Adjacent phases have a phase shift of 15°.The optimal 
rotor speed of the SRWG is determined by referring to the 
wind speed to extract the maximum power from the wind 
[36], which is shown in Fig. 4.  

1299 samples are collected from the flux linkage-
current-angle relationship. The input weights and bias are 
generated randomly, the output weights are analytically 
calculated using the extremely fast ELM. It takes only 
0.8292s to learn the 1299 samples, which is almost 
impossible for other iterative algorithms given the same 
hardware conditions. The ELM estimator only works in 
the range of 30° which is restricted to the magnetic 

 
Fig. 4. Configuration of the SRWG system and the rotor 

position estimation module 
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characteristics. Thus, when the current and flux linkage of 
certain phase are nonzero, they could be used by the ELM 
to estimate a 30° range of the rotor angle.  

Three types of sensor faults are simulated in this study to 
verify the effectiveness of the proposed diagnosis method. 
The faults include bias fault, drifting fault and intermittent 
fault. The bias fault is simulated by adding a constant shift 
to the output of the position sensor. A monotone increase is 
superimposed to the sensing signal to simulate the drifting 
fault. For the intermittent fault, a narrow bandwidth long 
flat-top pulse is imposed on the sensor’s output. 

 
5.2 Rotor position estimation 

 
The estimation results of the four separate ELMs when 

the wind speed is 12 m/s and the generator speed is 1000 
rpm are show in Fig. 6. Theoretically, only two phases 
with 30° phase shift (such as phase C and A) is enough to 
estimate the whole 60° angle cycle. However, as can be 
seen in Fig. 7, the estimation results are undesirable, which 
is due to the nonlinear magnetization characteristics of the 
SRWG. As shown in Fig. 3, the magnetic curves near the 
aligned, unaligned as well as low current regions are 
crowded together or even intersecting, which may reduce 
the accuracy of such advanced estimation algorithms. For 
the intersection points in the magnetic curves, it is a 
challenging task to estimate the rotor position precisely 
only using flux linkage-current-angle relationship because 
of the non-unique mapping. In fact, there is a distinguished 
region among the aligned, unaligned and the certain current 
and flux linkage range for rotor position estimation, which 
results in the relatively accurate estimation range of about 
20° shown in Fig. 6. Therefore, 15° sensitive region of 
each ELM is selected to contribute the whole 60° range 
angle estimation. The improved results are demonstrated in 
Fig. 7. The estimated rotor angle is very close to the real 
rotor position as shown in Fig. 7. The detailed estimation 
results under various operating conditions are presented in 
the following section. 

The assembled ELM estimation results under different 

operating conditions are shown in Fig. 8, Fig. 9 and Fig. 10, 
respectively.  

In the case of 12 m/s wind speed, the generator speed is 
1000 rpm. As shown in Fig. 7(b), the Maximum Absolute 
Error (MAE) of ELM estimation is 0.5748°, the Root Mean 
Squared Error (RMSE) is 0.1617°. The MAE and RMSE 
are both higher with 8 m/s wind speed. As the wind 
speed increases linearly from 6 to 12 m/s, the generator 
speed increases from 500 to 1000 rpm, the estimation 
error is bigger at the low speed stage. The MAE and 
RMSE results are presented in Table 1. Although the 
MAE in the 500 to 1000 rpm acceleration operating 
condition is relatively larger, the RMSEs are very low (no 
greater than 0.3°) in all the three operation conditions 
which indicate the overall estimation performance of the 
proposed method is satisfying. 

It is noted that the MAEs in the cases of 8 m/s wind 
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Fig. 5. Maximum power point tracking 
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and estimated rotor angle 
 

Table 1. The ELM estimation error at different operating 
conditions 

Operating Condition (wind speed, m/s) 
 8  

(667rpm)  
12 

(1000rpm) 
6-12 

(500-1000rpm) 
MAE (°) 0.7273 0.5748 2.3633 

RMSE (°) 0.1949 0.1617 0.2870 
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speed and 12 m/s wind speed conditions always appear 
when the corresponding current and flux linkage are in the 
transitional area between the distinguished and crowded 

regions of the magnetization characteristic curve, which 
may affect the performance of the ELM estimators. 
However, 0.7273° and 0.5748° of MAE are satisfying for 
position estimation. For the wind speed increasing from 6 
to 12 m/s operating condition, the MAE is 2.3633°, the 
relative large errors are all appear before reaching 700 rpm 
(0.035s).  

The corresponding current and flux linkage in this case 
are in the crowded region of the magnetization charac-
teristic curve which is inevitable in this operation condition. 
 

5.3 Result analysis of sensor fault diagnosis 
 
The residual generated under normal sensor condition 

when wind speed varies from 6 m/s to 12 m/s is shown in 
Fig. 11. The residual generated under the bias fault, drifting 
fault and intermittent are demonstrated in Fig. 12, 13, and 
14, respectively. Since the MAE is 2.3633° in this variable 
speed operating condition which is shown in Table 1, the 
threshold to determine the normal/abnormal status of the 
sensor is set to be ±2.5°. As can be seen in Fig. 11, the 
residual from 0.03s to 0.05s when the sensor is healthy and 
the wind speed is variable has little variations which are all 
within the threshold range. 

As shown in Fig. 12, the bias fault occurs at 0.04s and 
lasts until 0.05s, the generated residual has a rapid rise and 
exceeds the set upper threshold of 2.5° quickly just after 
the occurrence of this sensor fault. It is observed that the 
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Fig. 8. Assembled ELM estimation result when wind speed 
is 12m/s (wr =1000) rpm, (a) current and flux 
linkage waveforms, (b) estimation result 
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Fig. 9. Assembled ELM estimation result when wind speed 
is 8m/s (wr=667) rpm, (a) current and flux linkage 
waveforms, (b) estimation result 
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Fig. 10. Assembled ELM estimation result when wind 
speed from 6 m/s to 12 m/s, wr from 500 to 1000 
rpm, (a) current and flux linkage waveforms, (b) 
estimation result 
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average residual fluctuation also has a slight increase 
compared with the normal case.  

Fig. 13 presents the residual curve under sensor drifting 
fault condition when wind speed from 6 m/s to 12 m/s. The 

residual in the drifting fault occasion keeps gentle increase 
between 0.03s and 0.05s. The fault residual reaches and 
passes the upper threshold at about 0.046s. The fault alarm 
can be triggered at around 0.047s dependent on the setting. 

As is demonstrated in Fig. 14, a peak pulse of the 
residual is produced between 0.04s and 0.041s in the 
intermittent sensor fault circumstance when wind speed 
from 6 m/s to 12 m/s. It is noted that the average residual 
fluctuation also has an increase compared with the normal 
case.  

To summarize, when the rotor position sensor has a fault, 
the output of the sensor can’t represents the real rotor 
position while the proposed assembled ELM estimator can 
still estimate the rotor position with high accuracy, which 
generates an abrupt change of the residual. Once the 
residual exceeds the set threshold, the fault alarm can be 
triggered which indicates the detection of fault. By 
analyzing the generated residuals, different kinds of rotor 
position fault are identified. According to the simulation 
and results analysis, the common faults such as bias fault, 
drifting fault and intermittent fault have been detected and 
diagnosed accurately by using the proposed position sensor 
fault diagnostic scheme. 
 
 

6. Conclusion 
 
This paper presents a novel rotor position sensor fault 

diagnostic scheme for SRWG based on assembled ELM. 
Simulation results show that the learning speed of ELM is 
extremely fast, the rotor position estimation accuracy is 
also very high with the best RMSE of 0.1617°. The sensor 
faults including bias fault, drifting fault and intermittent 
fault have been detected and diagnosed accurately by using 
the proposed position sensor fault diagnostic approach. The 
rotor position estimation method as well as sensor fault 
diagnostic scheme proposed in this paper are of great 
significance for cost reduction, reliability improvement and 
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Fig. 11. Residual under normal sensor condition when 

wind speed from 6 m/s to 12 m/s 
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Fig. 12. Residual under sensor bias fault condition when 
wind speed from 6 m/s to 12 m/s 
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Fig. 13. Residual under sensor drifting fault condition 
when wind speed from 6 m/s to 12 m/s 
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Fig. 14. Residual under sensor intermittent fault condition 
when wind speed from 6 m/s to 12 m/s 
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predictive maintenance of SRWG. The proposed method is 
promising in the application of virtual sensor, position 
sensor redundancy, sensor-less control and sensor fault 
tolerant control of SRWG. 
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