전류, 진동 및 자속센서기반 스마트센서를 이용한 기계결함진단 성능비교

Comparing machine fault diagnosis performances on current, vibration and flux based smart sensors

손종덕†·태성도*·양보석*·황돈하**·강동식** Jong Duk Son, Sung Do Tae, Bo Suk Yang, Don Ha Hwang and Dong Sik Kang

Key Words : Smart sensors(스마트센서), Fault diagnosis(결함진단), Classifier comparison(분류기비교)

ABSTRACT

With increasing demands for reducing cost of maintenance which can detect machine fault automatically; low cost and intelligent functionality sensors are required. Rapid developments, in semiconductor, computing, and communication have led to a new generation of sensor called "smart" sensors with functionality and intelligence.

The purpose of this research is comparison of machine fault classification between general analyzer signals and smart sensor signals. Three types of sensors are used in induction motors faults diagnosis, which are vibration, current and flux. Classification results are satisfied..

1. 서 론

최근 마이크로 시스템의 발달로 어떤 대상의 신호 나 정보가 감지되는 일반적인 센서의 개념을 뛰어넘 어 지능화 센서라 불리는 스마트센서가 출시되고 있 다. 스마트센서는 기존 센서와 같이 원 데이터(raw data)를 감지하는 기능 이상의 더욱 진보된 기능성 (functionality)과 구조(architecture)를 가진다. 스마트센서의 일반적인 특징은 센서를 장비하는 감 지요소(센서), 신호처리 및 통신기술을 가진다⁽¹⁾ 스 마트센서는 교량과 스마트구조물 상태감시용으로 사 용하기 위해 저전력소모, 프로그래밍 가능한 소프트 웨어, 빠른 데이터 취득능력, 신뢰성 보장, 저렴한 가격을 목적으로 연구가 수행된다⁽²⁾ 스마트센서는 산업 모니터링과 제어에 비용절감, 유지보수의 용이 성, 위험 지역 접근의 용이성을 가져올 수 있다⁽³⁾

본 연구에서는 회전기계 결함진단을 위해 다양한 센서 신호들을 스마트센서와 일반분석기 이용하여 데이터를 취득하였다. 그리고 스마트센서의 결함진 단 사용가능성을 파악하기 위해 결함분류알고리즘 성능비교를 수행하였다.

2. 스마트센서

2.1 스마트센서의 구성

본 시스템은 크게 4 개의 모듈로 구성되어 있다.

```
    ↑ 손종덕; 부경대학교
    E-mail: skyman1231@hanmail.net
    Tel: (051) 629-6152, Fax: (051) 629-6150
    * 부경대학교 기계설계학과
```

** 한국전기연구원 전력설비진단연구그룹

센서 모듈, 인터페이스 모듈, 서버 모듈, 데이터 분 석 및 알고리즘계산 모듈로 구성되어 있다. 데이터 전송은 그림 1 을 참고하여 먼저 입력전압 범위는 ±2.5V 이고 아날로그 형태의 4 채널 전압신호를 받 는다. 그리고 멀티플렉서를 통하여 채널 1 번부터 순 차적으로 아날로그 신호 입력을 받아 HPF(High Pass Filter), Gain, LPF(Low Pass Filter)를 사용하여 신호처리 작업을 한다. LPF 는 Anti-aliasing 을 고려하여 8 차 필 터로 설계하였고 필터링된 아날로그 신호는 16bit 의 외부 ADC 를 거쳐 외부 메모리에 일시적으로 저장 되었다가 1024 개의 데이터식 순차적으로 베이스 스 테이션으로 보내진다. CPU(ATmega 128)은 이 때 센 서모듈의 멀티플렉서, Gain, LPF 주파수제어를 수행하 며, 인터페이스 모듈에서는 외부 ADC 와 외부메모리 컨트롤, 통신제어를 담당하게 된다.

Fig. 1 Diagram of smart sensors

스마트센서에서 디지털로 변환된 데이터는 시리얼 통신을 통하여 패킷의 형태로 베이스 스테이션으로 날아가게 된다. 베이스 스테이션은 매트랩으로 구현 되었으며 데이터들을 취합하여 시간, 주파수 디스플 레이, 진단알고리즘 계산을 수행한다. 스마트 센서 는 그림 2 와 같이 일련의 데이터취득 과정을 가진 다. 스마트센서와 베이스스테이션를 동작시키고 먼 저 베이스스테이션에서 그림 3 과같이 패킷 명령에 따라 스마트센서에서 데이터를 취득하여 베이스 스 테이션으로 보내게된다.

Fig. 2 Flowchart of smart sensors

시작) 비트	헤더	세비	센서이어디	전다 범위		7 <u>1121</u>	끹	
\$	PKW	S	Sensor_ID	frequency_Range		Gain	0x0D	Ox0A
(a) 베이스스테이션 패킷정의								
ᄱ	헤드	클린이어트		HPI		비회되 데이터	-	조재화

C	Sensor_ID	Gain	AD_Data
	(1)) -	1 - 11 1	-11-21-21-21

(b) 스마트센서 패킷정의

Fig. 3 Definition of packet informations

AD Data

0x0D

0x0A

2.2 스마트센서 검증

비트

\$

PKW

그림 3 과 같이 스마트 센서 시제품을 제작하였다. 진동, 전류와 자속 센서를 연결할 수 있도록 BNC 타입의 커넥터로 센서 입력신호를 받게 된다. 그리 고 외부 전원 및 배터리를 사용할 수 있도록 케이스 외부로 전원 커넥터가 있다.

(a) 케이싱된 센서 (b) 센서내부 PCB Fig. 4 Smart sensors

스마트센서 검증을 위해 그림 와 같은 실험장치 를 구성하였다. Command PC 에서 시리얼 입력 명령 을 주고 그것에 대한 아날로그 응답을 Analyzer 에서 검증을 수행하였다. LPF(Low Pass Filter)필터 성능테스 트를 검증을위해 분석기(Analyzer)에서 화이트 노이 즈(White Noise) ±1V 의 입력신호를 주어 그에 대한 필터응답을 받는다. 3,200Hz 주파수 입력 명령에 대 한 화이트 노이즈입력의 필터응답 결과는 그림 5 에 나타내었다. 필터응답은 평균화 1000 번을 수행하였 으며, -3dB 에서 3,200Hz 필터링되는 특성을 나타내었 다.

Fig. 5 apparatus of smart sensors signal validation

Fig. 6 Result of LPF

ADC 성능 검증을 위해 그림 4 에서 평선으로 크기 ±1V 주파수 1,000Hz 의 신호 입력을 주었다. 스마 트센서로 샘플링주파수 8,192Hz 데이터 갯수 8,192 로 측정한 결과는 그림 7, 그림 8 과 같이 시간 및 주파수 신호를 취득하였으며, 주파수 분석을 수행하 였을 때 정확히 1,000Hz 신호가 취득되었으며, 그림 9 에서 1000Hz 와 주변에 노이즈와의 크기 차이는 262 dB 이다.

Fig.7 Time of analog digital converted data

Fig.8 FFT of analog digital converted data

Fig. 9 FFT of analog digital converted data (dB scale)

3. 실험

3.1 실험장치사양

신호 취득 실험은 한국전기연구원에서 수행되었다. 실험 장치는 일반분석기는 그림 7, 스마트센서는 그림 8과 같이 실험장치를 구성하였다. 실험에는 7개 380V, 7.5kW, 60Hz, 4극 유도 전동기를 이용하였다. 기본적인 사양은 표 1에 나타내었다. 계측은 부하 상태에서 수 행되었다. 7개의 전동기 중 결함 상태의 전동기와 비 교하기 위해 하나는 정상 상태인 전동기를, 6개는 결 함전동기를 사용하였다. 6개의 결함 전동기는 굽은 축, 회전자 질량 불평형, 정적 편심, 결함 베어링, 회전자 봉 결함, 고정자 권선 결함이다. 결함모터의 종류는 표 2에 설명하였다. 결함 모의 방법은 그림 10과 같이 수행하였다

Table 1 Basic specification of the tested motor

	1			
Rotor speed	1760rpm	Poles		4 개
Frame	132M	Weight		70kg
Bearing (DE)	6208zzc3	Voltage		380V
Bearing (NDE)	6208zzc3	Power		7.5kW
Current	28.2/16.3 A	Number rotor bar	of	28 개
Line frequency	60 Hz	Number stator slot	of	46 개

Table 2 Descri	ption of fault	v types of the	tested motor
	puon or raunt	, c,pes or the	testea motor

Faults types	Fault details			
Faults types	Severe degree			
Bowed rotor	0.3mm			
Rotor	Point 1, 3			
Dynamic eccentricity	m = 20g			
Rotor	0.3mm			
static eccentricity	0.511111			
Faulty bearing	Flaking brinelling			
Broken rotor bar	2			
Short-turn	10 turn			
stator winding	10 tulli			

Fig 10. Experiment of general analyzer

Fig. 11 Experiment of smart sensors

Fig. 12 Installation of accelerometer, current and flux sensors

Fig. 13 Fault methods of induction motor

일반분석기와 스마트센서의 성능을 평가하기 위해서 7개 채널의 신호를 취득하였다. 전동기 드라이버(drive) 방향에 가속도 센서가 수직, 수평, 방향으로 2채널을 고정하였고, 전류 3상에 3채널 그리고 자속 센서는 그 림 3과 같이 모터내부에 2채널을 삽입하였다.

그림 4 와 같이 장비를 접지(ground)에 연결하여 전기적 노이즈 영향을 줄였다. 센서로부터 취득된 아날로그 신호는 신호분석기에서 A/D 변환과정을 거 친 뒤 필터링 되고 PC 에 저장된다. 이 때 데이터 수 는 8192 개, 최대 주파수 범위 2000Hz, 샘플링율은 5120Hz 이다. 모터의 결함당 각각의 센서에 20 번의 데이터를 취득하였다. 여기에서 10 개의 데이터는 알 고리즘의 훈련데이터로 나머지 10 개는 테스트용 데 이터로 사용하였다.

4. 결함진단비교

4.1 특징계산

7개의 결함 전동기, 3가지 종류의 센서로부터 신호 를 취득한 후 특징 계산을 하였다. 시간영역의 신호 는 결함 전동기에 대한 많은 정보를 가지고 있음에 도 불구하고 특징들을 잘 표현하지 못하고 필요 없 는 정보들도 가지고 있다. 그래서 특징 추출은 효과 적인 기계상태 감시를 위해 필요하다. 시간, 주파수 영역, AR(auto-regression)에서 계산된 파라미터들은 취 득된 신호의 일반적인 특징들을 정의하는데 사용된 다⁽²⁾. 각각의 센서로부터 취득된 특징 값은 시간영역 (10개), 주파수영역(3개), AR (8개)로 구성되며 표 3에 나타내었다. 계산된 특징 사이에 특징의 분포를 잘 확인할 수 있는 임의로 선택된 특징들을 그림 16과 그림 17에 나타내었다. 일반분석기에서의 특징값들 과 비교해볼 때 대표적으로 진동신호에서 RMS 값을 보면 스마트센서로 취득한 데이터가 같은 결함내에 서 특징들의 군집이 퍼져있고 7가지 모터 상태를 뚜 렷이 나타내는 특징이 없음을 알 수 있다.

Normal

Rotor

Faulted bearing

bar

Fig. 15 Time shapes of acquired signals by smart sensors

Signala	Desition	Values of features of signals					
Signals	Position	Time domain	Frequen	Auto regression			
Vibration Vertical Acceleration) Horizontal		 Mean RMS Shape factor Shaperase 	 Root mean squ Frequency cent Root variance f 	• AR coefficients $(a_1 \sim a_8)$			
Current Phase A Phase B Phase C		 Skewness Kurtosis Crest factor Entropy error 					
Flux 2	 1~2 Entropy entor Entropy estimation Histogram lower Histogram upper 						
	0.5	0.35		0.7	; ; ;]		
Accelerometer							
Accelerometer				0.2			
Current							
Flux2	84						
	(a) RN	<u>1</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u>	20 30 40 50 60 (b)Kurtosis	(c) Cres	t fact		
	Fig.	16 Features of acquired s	ignals by general an	alyzer			
	0.11 0.108						
	- KO&R				N		
Accelerometer	$\begin{array}{c} 0.106 \\ - \\ 0.104 \\ - \\ 0.102 \\$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Accelerometer Current	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Accelerometer Current	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $					
Accelerometer Current Flux2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Table 3 Description of values of features of signals

4.2 특징분류

일반분석기와 스마트센서의 결함진단 비교를 위해 분류기 5가지(SVM, LDA, *k*-NN, RFA, ART-KNN)가 평 가되었다.

- Support Vector Machine *(SVM)*: SVM ⁽³⁾은 통계적인 학습 이론에 근거한다. 이 기술은 몇몇 훈련 샘 플로 좋은 분류성능을 발휘한다. 커널 함수는 선 형인지, 다항식, 가우시안 RBF, 그리고 S자형인지 를 결정하는 중요한 파라미터이다.
- Linear discriminant analysis (LDA) : LDA ⁽⁴⁾는 특징의 차원을 줄이는 것으로 알려져 있으며 분류를 위 해 사용된다. 이것은 선형 변환 행열을 통해 파 라미터 공간에서 특징공간으로 사영시킨다. 이 분류기는 큰 데이터 집합을 가지는 선형의 경우 에 효과적으로 계산된다.
- *k nearest neighbors (k-NN)* : k-NN ⁽⁵⁾은 쉽고 효과적 인 분류기이다. 분류기의 목적은 확인

되지 않은 테스트 데이터가 미리 정의된 초 공 간의 구 반경 안에 가장 가까운 이웃을 찾은 것 이다. 그것은 하나 또는 여러 개의 가까운 이웃 을 찾는다.

- Random forest algorithm (RFA)⁽⁶⁾: 이것은 나무 구 조의 분류기가 모여 있는 구조이다 {*h*(*x*, *Θ_k*), *k* = 1, 2, ...}. 여기서 *Θ_k* 은 독립된 임의의 벡터로 나 누어져 있고 각 나무는 입력 *x*에서 가장 일반적 분류를 위한 투표를 한다.
- Adaptive resonance theory-Kohonen neural network (ART-KNN)⁽⁷⁾: ART-KNN은 적응 공진 이론과 Kohonen 신경망의 학습 전략을 통합한 신경망 이다.

각 분류기의 파라미터들은 표 4에 나와 있고 훈련과 테스트의 분류 정확도는 표 5에 나와 있 다.

Classifier	Parameters values
SVM	Rbf kernel function, C=100, arg = 0.25 one against all model
<i>k</i> -NN	<i>k</i> = 3
RFA	No. of variables randomly sample = 10 , No. of trees = 500 , seeds = 123
ART-KNN	Distance-based optimization, initial similarity = 0.6 , iterative step = 0.004 , iterative No. = 20

Table 5 Diagnosis accuracy of train and test set							
Compose towns		Accuracy rate of each classifier					
Sensor type		SVM	LDA	<i>k</i> -NN	RFA	ART-KNN	
General analyzer	Train	1	1	1	1	0.986	
	Test	1	1	1	1	0.929	
Smart sensors	Train	0.957	1	1	1	0.814	
	Test	0.9	1	1	0.957	0.617	

Fig. 18 Comparison of classifier results

5. 결론

알고리즘 분류 결과가 표 5 와 그림 18 에 나타내 었다. LDA, k-NN 알고리즘은 일반분석기나 스마트센 서 모두 동일하게 100%의 분류결과를 나타내었으나, SVM, RF, ART-KNN은 각각 90%, 95.7%, 61.7%을 나타내었다. 이는 그림 17 에서 나타난 같은 결함내 에서 특징값의 군집이 일반분석기 신호에 비해 퍼져 있고, 다른 결함들간에는 명확하게 구분되는 특징이 없기 때문이다. 그리고 각 분류기들간의 비선형 파 라미터 특성들을 최적화되었다고 판단되기 어렵다.

향후과제로는 분류기 파라미터 최적화와 무선 환 경에서 계측한 데이터를 이용하여 알고리즘 성능비 교를 할 예정이다.

후 기

본 연구는 2007 년 한국 전기연구원의 연구비에 의해 수행되었으며, 이에 감사드립니다.

참 고 문 헌

 B.F. Spencer Jr, M.E. Ruiz-Sandoval and N. Kurata,
 2004, "Smart sensing technology: opportunities and challenges, Structual Control and Health Monitoring"

(2) N. Yazdi, A. Mason, K. Najafi, and K.D. Wise, 1996," A Smart Sensing Microsystem with a Capacitive Sensor Interface, Center for Integrated Sensors and Circuits"

(3) H. Ramamurthy, B.S. Prabhu and R. Gadh, 2004, "Smart Sensor Platform for Industrial Monitoring and Control", Wireless Internet for the Mobile Enterprise Consortium Los Angeles, California, USA.

(4) T. Han., Development of a Feature Based Fault Diagnostics System and Its Application to Induction Motors, Ph.D thesis, Pukyong National University, 2005 South Korea.

(5) B.S. Yang, T. Han, J.L. An, ART-Kohonen neural network for fault diagnosis of rotating machinery, Mechanical System and Signal Processing, 2004, Vol 18 (3), pp.645-657