• Title/Summary/Keyword: Sensor ECU

Search Result 65, Processing Time 0.038 seconds

Multi-target Data Association Filter Based on Order Statistics for Millimeter-wave Automotive Radar (밀리미터파 대역 차량용 레이더를 위한 순서통계 기법을 이용한 다중표적의 데이터 연관 필터)

  • Lee, Moon-Sik;Kim, Yong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.94-104
    • /
    • 2000
  • The accuracy and reliability of the target tracking is very critical issue in the design of automotive collision warning radar A significant problem in multi-target tracking (MTT) is the target-to-measurement data association If an incorrect measurement is associated with a target, the target could diverge the track and be prematurely terminated or cause other targets to also diverge the track. Most methods for target-to-measurement data association tend to coalesce neighboring targets Therefore, many algorithms have been developed to solve this data association problem. In this paper, a new multi-target data association method based on order statistics is described The new approaches. called the order statistics probabilistic data association (OSPDA) and the order statistics joint probabilistic data association (OSJPDA), are formulated using the association probabilities of the probabilistic data association (PDA) and the joint probabilistic data association (JPDA) filters, respectively Using the decision logic. an optimal or near optimal target-to-measurement data association is made A computer simulation of the proposed method in a heavy cluttered condition is given, including a comparison With the nearest-neighbor CNN). the PDA, and the JPDA filters, Simulation results show that the performances of the OSPDA filter and the OSJPDA filter are superior to those of the PDA filter and the JPDA filter in terms of tracking accuracy about 18% and 19%, respectively In addition, the proposed method is implemented using a developed digital signal processing (DSP) board which can be interfaced with the engine control unit (ECU) of car engine and with the d?xer through the controller area network (CAN)

  • PDF

IMPROVING METHOD FOR VERIFYING STEERING ANGLE SIGNAL OF EPS (차량용 EPS의 조향각 신뢰성 향상 제안)

  • Jang, Hyunseop;Kwon, Dowook;Han, Sangwhi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1507-1510
    • /
    • 2012
  • 본 논문은 EPS(전자식 파워 스티어링)에 사용되는 Torque and Angle sensor 의 절대각 신뢰성 보증 방식에 관한 것으로, Inductive 방식의 센서에서 절대각 신호 신뢰성 보증에 대한 효과적인 방법을 제시한다. 전동식 파워 스티어링 시스템의 ECU(전자제어유닛)는 조타각도를 출력하는 2 개의 소자에서 버니어 알고리즘을 통해 360 도 이상의 멀티 조타각을 인식하게 된다. 토크&조향각 센서는 절대 조향각을 계산하는 1 개의 Hall IC 소자 신호와, 상대 조향각을 계산하는 ASIC 소자 신호를 사용하여 멀티 조타각을 인식한다. 인식된 조타각이 추가적인 검증 절차 없이 제어에 사용된다면, 센서의 이상 발생 시에 운전자의 조타감을 불편해질 수 있고, 나아가서는 차량사고의 위험을 발생시킬 수 있다.따라서 차량 거동 시 절대 조향각의 신뢰성 검증은 제어와 동시에 항상 요구되어야 한다. 특히, 유럽/미국 업계의 ISO 26262 표준 도입에 따라 절대 조향각의 높은 신뢰성이 요구된다. 본 논문에서는 이러한 요구사항을 만족하기 위해 측정된 절대각 신호를 기준으로 상대각 신호 2 개를 측정에 사용하고, Driving 시에도 절대각 기준의 신뢰도 향상을 위해 절대각 신호 1 개를 비교기로 사용한다. 최적화된 에러 기준을 근거로 절대 조향각 신호의 신뢰성을 보장하는 방법을 제안한다. 이러한 방법을 적용한다면, 정확하고 안정적으로 조타각을 결정함으로써 EPS 안전성 확보에 도움을 줄 수 있다.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

An Experimental Study on the Performance and Emission Characteristics of SI Engine Using New Type of Throttle Body (스로틀 바디가 가솔린 엔진의 출력 및 배기배출물 특성에 미치는 영향에 관한 실험적 연구)

  • Cho, Seung-Wan;Lee, Sang-Suk;Jin, Dong-Kyu;Shim, Jae-Joon;Kim, Gyu-Bo;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.884-890
    • /
    • 2008
  • Many researches have been carried out to reduce the emission levels and lower the fuel consumption in SI engines. Recently electronically controlled injection system is widely adapted to a passenger car to achieve these goals. Throttle body is also an important factor which influences on the emissions and engine power. In this study we redesigned a throttle body and conducted an experimental study to see the effects on engine performance and emission characteristics. We could find that idle speed control(ISC) showed stable operation characteristics as the cooling water temperature varied. And CO and HC emissions also satisfied the regulation limit.

Development of Charge Indicator Inspection System for Plug-in Hybrid Electric Vehicle (PHEV용 Charge Indicator 시험기 개발)

  • Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • In this work, we have developed a test system to examine whether the charge indicator of the plug-in hybrid electric vehicle (PHEV) works properly or not. In PHEV, the driver should charge the necessary electricity by plugging in manually and be able to know the charging status through the charge indicator conveniently located for the charging individual. Our system used the CAN bus to transmit the same commands from ECU to the indicator to test the proper operation of the indicator lights. It measured the electric current values during operation and analyzed to determine the quality of the indicators. The inspection items included the proper packaging, the electrical shorts, the LED lighting during charging, the LED lighting for charging failure, and the LED lighting when errors occur. We developed the system for the operators in the factory allowing them to approve the test results at the site. We developed the hardware, the control software, and the software to store the test results and the history of the products in the database. Serial numbers were given to the good quality products and the bar code labels were printed to trace the products afterwards. Through this work, we developed a system to inspect the electric parts in real time upon fabrication. We are planning to further improve our system to inspect the brightness of the indicator by adding the vision inspection in future.

Analysis of Diagnosis and Failsafe Algorithm Using Transmission Simulator (변속기 시뮬레이터를 이용한 진단 및 안전작동 알고리즘 분석)

  • Jung, Gyuhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.89-97
    • /
    • 2014
  • As the digital control technologies in automotive industry have advanced, electronic control units(ECUs) play a key-role to improve system performance. Transmission control unit(TCU) is a shifting controller for automatic transmission of which major functions are to determine the shift and manage the shifting process considering the various sensor signal on transmission and driver's commands. As with any ECU in vehicle, TCU performs complex algorithms such as shift control, diagnostic and failsafe functions. However, firmware design analysis is hardly possible by the reverse engineering due to code protection. Transmission simulator is a hardware-in-the-loop simulator which enables TCU to work in normal mode by simulating the electrical signal of TCU interface. In this research, diagnosis and failsafe algorithm implemented on commercialized TCU is analyzed by using the transmission simulator that is developed for wheel loader construction vehicle. This paper gives various experimental results on the proportional solenoid current trajectories for different operating modes, error detection criterion and limphome mode gears for all the possible cases of clutch malfunction. The derived results for conventional TCU can be applied to the development of inherent TCU algorithms and the transmission simulator can also be utilized for the test of TCU to be developed.

Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator Using Steering-swivel Angle Lookup Table (조향각-회전각 룩업테이블을 이용한 대칭형 각도센서 보상기를 가지는 안전한 적응형 전조등 제어기의 설계)

  • Youn, Jiae;An, Joonghyun;Yin, Meng Di;Cho, Jeonghun;Park, Daejin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.112-121
    • /
    • 2016
  • AFLS (Adaptive front lighting system) is being applied to improve safety in driving automotive at night. Safe embedded system design for controlling head-lamps is required to improve noise robust ECU hardware and software simultaneously by considering safety requirement of hardware-dependent software under severe environmental noise. In this paper, we propose an adaptive headlight controller with a newly-designed symmetric angle sensor compensator, especially based on the proposed steering-swivel angle lookup table to determine whether the current controlling target is safe. The proposed system includes an additional backup hardware to compare the system status and provides safe swivel-angle management using a controlling algorithm based on the pre-defined lookup table (LUT), which is a symmetric mapping relationship between the requested steering angle and expected swivel angle target. The implemented system model shows that the proposed architecture effectively detects abnormal situations and restores safe status of controlling the light-angle in AFLS operations under severe noisy environment.

A Study for Faliure Examples Involved Diode, Thermo Sensor and Wiring Short of Electronic Control A/C System in a Vehicle (승용자동차 전자제어 에어컨 장치의 다이오드, 써모센서와 배선단락에 대한 고장사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Jeong Ho;Moon, Hak Hoon;You, Chang Bae;Hwang, Han Sub;Lim, Chun Moo;Jung, Dong Hwa;Na, Yun Whan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.83-88
    • /
    • 2017
  • The purpose of this paper is to study for a failure examples producing in electronic control air conditioner in vehicle. The first example, it looked for the repetitive fuse cutting phenomenon that the diode using for a surge voltage prevention of inner A/C relay damaged because of no absorbing the surge voltage by short of diode when the A/C is off. The second example, it knew the icing phenomenon of evaporator that the A/C ECU didn't control the A/C because of inner cutting of fin thermo sensor. The third example, it verified the operation trouble phenomenon because of the A/C switch and for sensor burned in flames by short phenom enon when the sheath of the cable has peeled off. Therefore, the driver have to manage the optimism system of a car by thoroughgoing inspection and improvement the failure phenomenon.

Performance of IEEE 802.11b WLAN Standard at In-Vehicle Environment for Intelligent U-Car System (지능형 U-Car에서 IEEE 802.11b을 이용한 차량 내 데이터 무선 랜 전송 성능 분석)

  • Lee Seung-Hwan;Heo Soo-Jung;Park Yong-Wan;Lee Sang-Shin;Lee Dong-Hahk;Yu Jae-Hwang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.80-87
    • /
    • 2006
  • In this paper, we analyze the performance of IEEE 802.11b WLAN communication between access point(AP) and mobile equipment(ME) in 2.4 GHz band with noise and interference factors. WLAN communication at in-vehicle environment is assumed as the communication between main vehicle controller and electronic device such as sensor, ECU (Electrical Control Unit) in vehicle on telematics field for implementing wireless vehicle control system. Received interference level from other system's mobile equipment in the same band and automobile noise from each part of vehicle can be the main factors that can cause increasing error rate of control signal. With these (actors, we focus on the Eb/No the BER performance of WLAN for analyzing the characteristic of interference factors by the measured bit error rate.

Research on Communication and The Operating of Server System for Vehicle Diagnosis and Monitoring (차량진단 및 모니터링을 위한 통신과 서버시스템 운용에 관한 연구)

  • Ryoo, Hee-Soo;Won, Yong-Gwan;Park, Kwon-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.41-50
    • /
    • 2011
  • This article is concerned with the technology to provide car driver the car's status which are composed of car trouble code in car engine and many sensors. In addition, it installs vehicle diagnostic programs on wireless communication's portable device, for example, Smart phone, PDA, PMP, UMPC. As a result, this is to provide car manager with many information of car sensors when we go to car maintenance. it can monitor relevant information on vehicle by portable device in real time, alert drivers with specific messages and also enable them to address abnormalities immediately. Moreover, the technology could help the drivers who perhaps don't know very well about their vehicles to drive safely and economically as well; the reason is because the whole system is composed of just Vehicle-information collecting device and personal wireless communication's portables and transfers the relating data to server computers through wireless network in order to handle information on vehicles. This technology make us monitor vehicle's running, failure and disorder by using wireless communication's portable device. Finally, this study system is composed of a lot of application to display us the car's status which get car's inner sensor information while driving a car.