• Title/Summary/Keyword: Sensor Data Processing

Search Result 1,382, Processing Time 0.06 seconds

DEVELOPMENT OF NANO-FLUID MOVEMENT MEASURING DEVICE AND ITS APPLICATION TO HYDRODYNAMIC ANALYSIS OF DENTINAL FLUID (미세 물 흐름 측정장치의 개발과 상아세관액의 수력학에의 응용)

  • Lee, In-Bog;Kim, Min-Ho;Kim, Sun-Young;Chang, Ju-Hea;Cho, Byung-Hoon;Son, Ho-Hyun;Back, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.141-147
    • /
    • 2008
  • This study was aimed to develop an instrument for real-time measurement of fluid conductance and to investigate the hydrodynamics of dentinal fluid. The instrument consisted of three parts; (1) a glass capillary and a photo sensor for detection of fluid movement, (2) a servo-motor, a lead screw and a ball nut for tracking of fluid movement, (3) a rotary encoder and software for data processing. To observe the blocking effect of dentinal fluid movement, oxalate gel and self-etch adhesive agent were used. BisBlock (Bisco) and Clearfil SE Bond (Kuraray) were applied to the occlusal dentin surface of extracted human teeth. Using this new device, the fluid movement was measured and compared between before and after each agent was applied. The instrument was able to measure dentinal fluid movement with a high resolution (0.196 nL) and the flow occurred with a rate of 0.84 to 15.2 nL/s before treatment. After BisBlock or Clearfil SE Bond was used, the fluid movement was decreased by 39.8 to 89.6%.

Methods for Enhancing Reliability of On-Ground IoT Applications (지상용 IoT 애플리케이션의 신뢰성 향상 기법)

  • Shin, Dong Ha;Han, Seung Ho;Kim, Soo Dong;Her, Jin Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.151-160
    • /
    • 2015
  • Internet-of-Things(IoT) is the computing environment to provide valuable services by interacting with multiple devices, where diverse devices are connected within the existing Internet infrastructure and acquire context information by sensing. As the concern of IoT has been increased recently, most of the industries develop many IoT devices. And, many people are focused on the IoT application that is utilizing different technologies, which are sensor network, communication technologies, and software engineering. Developing on-ground IoT application is especially even more active in progress depending on increasing of on-ground IoT devices because it is possible for them to access dangerous and inaccessible situation. However, There are a few studies related IoT. Moreover, since on-ground IoT application, which is different from typical software application, has to consider device's characteristics, communication, and surround condition, it reveal challenges, decreasing reliability. Therefore, in this paper, we analyze reliability challenges related to maturity and fault tolerance, one of reliability attributes, occurring in developing on-ground IoT applications and suggest the effective solutions to resolve the challenges. To verify proposed the challenges and solutions, we show result that is applying the solutions to applications. By presenting the case study, we evaluate the effectiveness of applying the solutions to the application.

Electrochemical Behavior of UCl3 and GdCl3 in LiCl-KCl Molten Salt (LiCl-KCl 고온 용융염 내 UCl3 및 GdCl3의 전기화학적 거동 연구)

  • Min, Seul-Ki;Bae, Sang-Eun;Park, Yong-Joon;Song, Kyu-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.276-281
    • /
    • 2009
  • Electrochemical behaviors of $U^{3+}$ and $Gd^{3+}$ were investigated in LiCl-KCl eutectic molten salt by using various electrochemical techniques. The electrodeposition and dissolution currents for uranium show the maximum at -1.51V and -1.35V, respectively while, for gadolinium,at -2.15V and -1.9V, respectively. In case of LiCl-KCl molten salt containing both of $U^{3+}$ and $Gd^{3+}$, the peak potential of electrodeposition of gadolinium shifts to more positive potential than in the solution without $U^{3+}$. The potentials in chronopotentiometric data suddenly dropped to negative value as soon as the reduction currents were applied and became constant at the potential around which the $U^{3+}$ and $Gd^{3+}$ are electrodeposited. The results of normal pulse voltammetry (NPV) and square wave voltammetry show that those methods can be used to qualitatively analyze the elements in the melts. Especially, the differentiation of NPV result was found to be useful for the separation of the peaks of which potentials are close each other.

Determination of Optimum Sterilization Condition for the Production of Retorted Kimchi Soup (레토르트 처리한 김치찌개 제품의 최적 살균조건 결정)

  • Cheon, Hee Soon;Park, Eun-Ji;Cho, Won-Il;Hwang, Keum Taek;Chung, Myong-Soo;Choi, Jun-Bong
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2014
  • In order to optimize process conditions for manufacturing retorted Kimchi soup by using stationary and rotary types systems were applied for sterilization process. For investigating the differences in heat penetration characteristics during sterilization, Kimchi soup was packed into retort pouches, and sterility ($F_0$ value) at various positions in the product was measured through a wireless $F_0$ sensor. Heat penetration characteristics were significantly affected by sterilization method. From data analysis, optimum ranges of sterilization temperature and time was determined to be $120.7^{\circ}C$, 13 min for rotary type and $120.7^{\circ}C$, 20 min for stationary type. At those conditions, they had similar sterility ($F_0$ value). The results showed that rotation provides faster heat penetration and more uniform sterility than various positions of the product. These results derived a lot of advantages from related industry. For instance, many of the more viscous semi-liquid products and heat sensitive natural products could be sterilized in the lager pouch sizes without overcooking or scorching. Hence, current study suggests that rotary type retort would make it possible not only to reduce processing times as 35~45%, but also to improve the quality of product as overall taste, flavor, color, and texture with significant difference (p<0.05).

A Camera Tracking System for Post Production of TV Contents (방송 콘텐츠의 후반 제작을 위한 카메라 추적 시스템)

  • Oh, Ju-Hyun;Nam, Seung-Jin;Jeon, Seong-Gyu;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.692-702
    • /
    • 2009
  • Real-time virtual studios which could run only on expensive workstations are now available for personal computers thanks to the recent development of graphics hardware. Nevertheless, graphics are rendered off-line in the post production stage in film or TV drama productions, because the graphics' quality is still restricted by the real-time hardware. Software-based camera tracking methods taking only the source video into account take much computation time, and often shows unstable results. To overcome this restriction, we propose a system that stores camera motion data from sensors at shooting time as common virtual studios and uses them in the post production stage, named as POVIS(post virtual imaging system). For seamless registration of graphics onto the camera video, precise zoom lens calibration must precede the post production. A practical method using only two planar patterns is used in this work. We present a method to reduce the camera sensor's error due to the mechanical mismatch, using the Kalman filter. POVIS was successfully used to track the camera in a documentary production and saved much of the processing time, while conventional methods failed due to lack of features to track.

Status Report of the Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Moon, Bongkon;Park, Sung-Joon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared spectro-photometric instrument optimized to the Next Generation of small satellite series (NEXTSat). To achieve the major scientific objectives for the study of the cosmic star formation in local and distant universe, the spectro-photometric survey covering more than 100 square degree will be performed. The main observational targets will be nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optics was developed to cover a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $2.5{\mu}m$, which were revised based upon the recent test and evaluation of the NISS instrument. The mechanical structure were tested under the launching condition as well as the space environment. The signal processing from infrared sensor and the communication with the satellite were evaluated after the integration into the satellite. The flight model of the NSS was assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. The accurate calibration data were obtained in our test facilities. Here, we report the test results of the flight model of the NISS.

  • PDF

Design and Implementation of the Stop line and Crosswalk Recognition Algorithm for Autonomous UGV (자율 주행 UGV를 위한 정지선과 횡단보도 인식 알고리즘 설계 및 구현)

  • Lee, Jae Hwan;Yoon, Heebyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.271-278
    • /
    • 2014
  • In spite of that stop line and crosswalk should be aware of the most basic objects in transportation system, its features extracted are very limited. In addition to image-based recognition technology, laser and RF, GPS/INS recognition technology, it is difficult to recognize. For this reason, the limited research in this area has been done. In this paper, the algorithm to recognize the stop line and crosswalk is designed and implemented using image-based recognition technology with the images input through a vision sensor. This algorithm consists of three functions.; One is to select the area, in advance, needed for feature extraction in order to speed up the data processing, 'Region of Interest', another is to process the images only that white color is detected more than a certain proportion in order to remove the unnecessary operation, 'Color Pattern Inspection', the other is 'Feature Extraction and Recognition', which is to extract the edge features and compare this to the previously-modeled one to identify the stop line and crosswalk. For this, especially by using case based feature comparison algorithm, it can identify either both stop line and crosswalk exist or just one exists. Also the proposed algorithm is to develop existing researches by comparing and analysing effect of in-vehicle camera installation and changes in recognition rate of distance estimation and various constraints such as backlight and shadow.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Generation of Mosaic Image using Aerial Oblique Images (경사사진을 이용한 모자이크 영상 제작)

  • Seo, Sang Il;Park, Byung-Wook;Lee, Byoung Kil;Kim, Jong In
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.145-154
    • /
    • 2014
  • The road network becomes more complex and extensive. Therefore, the inconveniences are caused in accordance with the time delay of the restoration of damaged roads, demands for excessive costs on information collection, and limitations on acquisition of damage information of the roads. Recently, road centric spatial information is gathered using mobile multi sensor system for road inventory. But expensive MMS(Mobile Mapping System) equipments require high maintenance costs from beginning and takes a lot of time in the data processing. So research is needed for continuous maintenance by collecting and displaying the damaged information on a digital map using low cost mobile camera system. In this research we aim to develop the techniques for mosaic with a regular ground sample distance using successive image from oblique camera on a vehicle. For doing this, mosaic image is generated by estimating the homography of high resolution oblique image, and the ground sample distance and appropriate overlap are analyzed using high resolution aerial oblique images which contain resolution target. Based on this we have proposed the appropriate overlap and exposure interval for mobile road inventory system.