DOI QR코드

DOI QR Code

Electrochemical Behavior of UCl3 and GdCl3 in LiCl-KCl Molten Salt

LiCl-KCl 고온 용융염 내 UCl3 및 GdCl3의 전기화학적 거동 연구

  • Min, Seul-Ki (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Bae, Sang-Eun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Yong-Joon (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Kyu-Seok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • 민슬기 (한국원자력연구원 원자력화학연구부) ;
  • 배상은 (한국원자력연구원 원자력화학연구부) ;
  • 박용준 (한국원자력연구원 원자력화학연구부) ;
  • 송규석 (한국원자력연구원 원자력화학연구부)
  • Published : 2009.08.28

Abstract

Electrochemical behaviors of $U^{3+}$ and $Gd^{3+}$ were investigated in LiCl-KCl eutectic molten salt by using various electrochemical techniques. The electrodeposition and dissolution currents for uranium show the maximum at -1.51V and -1.35V, respectively while, for gadolinium,at -2.15V and -1.9V, respectively. In case of LiCl-KCl molten salt containing both of $U^{3+}$ and $Gd^{3+}$, the peak potential of electrodeposition of gadolinium shifts to more positive potential than in the solution without $U^{3+}$. The potentials in chronopotentiometric data suddenly dropped to negative value as soon as the reduction currents were applied and became constant at the potential around which the $U^{3+}$ and $Gd^{3+}$ are electrodeposited. The results of normal pulse voltammetry (NPV) and square wave voltammetry show that those methods can be used to qualitatively analyze the elements in the melts. Especially, the differentiation of NPV result was found to be useful for the separation of the peaks of which potentials are close each other.

본 연구는 고온화학공정에 사용할 전기화학적 센서 기술 개발의 사전 연구로서 고온 LiCl-KCl 공융염에 $UCl_3$$GdCl_3$를 녹여 $U^{3+}$$Gd^{3+}$의 전기화학 반응을 조사하였다. $U^{3+}$는 고온 LiCl-KCl 용융염내에서 -0.2V/-0.35 V에서 $U^{4+}$로의 산화/환원반응의, -1.51 V/-1.35 V에서 전착/해리 반응전류의 피크를 나타내었다. $Gd^{3+}$의 경우 -2.15 V에서 전착반응 피크를, -1.9 V에서 산화해리전류 피크를 나타내었다. $U^{3+}$$Gd^{3+}$의 혼합 고온 용융염에서는 $Gd^{3+}$의 전착 피크가 양의 전위로 이동하였다. 일정전류법의 결과는 시간이 지남에 따라 전위값이 일정해졌으며 그 전위값은 전해질 내 반응물의 환원전위값과 일치하였다. 노멀펄스전위법과 직각파전위법은 두 원소의 정성분석을 위한 좋은 전기화학적 방법론임을 보였으며 특히 노멀펄스전위곡선을 미분한 결과는 사용된 다른 방법에 비해 반응전류의 피크분리가 잘 일어났다.

Keywords

References

  1. P. N. Pearson and M. R. Palmer, 'Atmospheric carbon dioxide concentrations over the past 60 million years' Nature, 406, 695 (2000) https://doi.org/10.1038/35021000
  2. D. K. Cho, S. K. Yoon, H. J. Choi, J. Choi, and W. I. Ko, 'Reference Spent Nuclear Fuel for Prprocessing Facility Design' J. Kore. Rad. Waste Soc., 6, 225 (2008)
  3. J. H. Yoo, B. J. Lee, H. S. Lee, and E. H. Kim, 'Investigation of Pyroprocessing Concept and Its Applicability as an Alternative Technology for Conventional Fuel Cycle' J. Kore. Rad. Waste Soc., 5, 283 (2007)
  4. O. Shirai, M. Iizuka, T. Iwai, Y. Suzuki, and Y. Arai, 'Electrode reaction of plutonium at liquid cadmium in LiC-KCl eutectic melts' J. Electroanal. Chem., 490, 31-36 (2000) https://doi.org/10.1016/S0022-0728(00)00193-5
  5. T. Nagai, A. Uehara, T. Fujii, O. Shirai, N. Sato, and H. Yamana, 'Redox equilibrium of $U^{4+}/U^{3+}$ in molten NaCl-2CsCl by UV-Vis spectrophotometry and cyclic voltammetry' J. Nucl. Sci. Technol., 42, 1025-1031 (2005) https://doi.org/10.3327/jnst.42.1025
  6. Y. D. Yan, M. L. Zhang, Y. Xue, W. Han, D. X. Cao, and L. Y. He, 'Electrochemical study of the codeposition of Mg-Li-Al alloys from LiCl-KCl-$MgCl_{2}$-$AlCl_{3}$ melts' J. Appl. Electrochem., 39, 455-461 (2009) https://doi.org/10.1007/s10800-008-9693-1
  7. J. Serp, M. Allibert, A. Le Terrier, R. Malmbeck, M. Ougier, J. Rebizant, and J. P. Glatz, 'Electroseparation of actinides from lanthanides on solid aluminum electrode in LiCl-KCl eutectic melts' J. Electrochem. Soc., 152, C167-C172 (2005) https://doi.org/10.1149/1.1859812
  8. H. Kawamura and Y. Ito, 'Electrodeposition of cohesive carbon films on aluminum in a LiCl-KCl-K2CO3 melt' J. Appl. Electrochem., 30, 571-574 (2000) https://doi.org/10.1023/A:1003927100308
  9. M. R. Bermejo, F. de la Rosa, E. Barrado and Y. Castrillejo, 'Cathodic behaviour of europium(III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl-KCl' J. Electroanal. Chem., 603, 81-95 (2007) https://doi.org/10.1016/j.jelechem.2007.01.018
  10. L. Cassayre, C. Caravaca, R. Jardin, R. Malmbeck, P. Masset, E. Mendes, J. Serp, P. Soucek, and J. P. Glatz, 'On the formation of U-Al alloys in the molten LiCl-KCl eutectic' J. Nucl. Mater., 378, 79-85 (2008) https://doi.org/10.1016/j.jnucmat.2008.05.004
  11. T. J. Kim, Y. H. Cho, I. K. Choi, J. G. Kang, K. Song, and K. Y. Jee, 'Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide' J. Nucl. Mater., 375, 275-279 (2008) https://doi.org/10.1016/j.jnucmat.2007.12.002
  12. Y. J. Park, T. J. Kim, Y. H. Cho, Y. J. Jung, H. J. Im, K. Song, and K. Y. Jee, 'EPR investigation on a quantitative analysis of Eu(II) and Eu(III) in LiCl/KCl eutectic molten salt' Bull. Korean Chem. Soc., 29, 127-129 (2008) https://doi.org/10.5012/bkcs.2008.29.1.127
  13. T. J. Kim, Y. H. Cho, I. K. Choi, J. G. Kang, and K. Y. Jee, 'EPR and luminescence studies of Eu(II) magnetically diluted in LiCl-KCl salt' J. Lumin., 127, 731-734 (2007) https://doi.org/10.1016/j.jlumin.2007.04.008
  14. P. Masset, D. Bottomley, R. Konings, R. Malmbeck, A. Rodrigues, J. Serp, and J. P. Glatz, 'Electrochemistry of uranium in molten LiCl-KCl eutectic' J. Electrochem. Soc., 152, A1109-A1115 (2005) https://doi.org/10.1149/1.1901083
  15. Y. J. Park, Y. J. Jung, S. K. Min, Y. H. Cho, H. J. Im, J. W. Yeon, and K. Song, 'A Quartz Tube Based $Ag|Ag^{+}$ Reference Electrode with a Tungsten Tip Junction for an Electrochemical Study in Molten Salts' Bull. Korean Chem. Soc., 30, 133-136 (2009) https://doi.org/10.5012/bkcs.2009.30.1.133
  16. O. Shirai, T. Iwai, Y. Suzuki, Y. Sakamura, and H. Tanaka, 'Electrochemical behavior of actinide ions in LiCl-KCl eutectic melts' J. Alloys Comp., 271-273, 685-688 (1998) https://doi.org/10.1016/S0925-8388(98)00187-X
  17. K. Serrano and P. Taxil, 'Electrochemical reduction of trivalent uranium ions in molten chlorides' J. Appl. Electrochem., 29, 497-503 (1999) https://doi.org/10.1023/A:1003402029895
  18. E. Herrero, L. J. Buller, and H. D. Abruna, 'Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials' Chem. Rev., 101, 1897-1930 (2001) https://doi.org/10.1021/cr9600363
  19. J. Serp, P. Lefebvre, R. Malmbeck, J. Rebizant, P. Vallet, and J. P. Glatz, 'Separation of plutonium from lanthanum by electrolysis in LiCl-KCl onto molten bismuth electrode' J. Nucl. Mater., 340, 266-270 (2005) https://doi.org/10.1016/j.jnucmat.2004.12.004
  20. M. R. Bermejo, J. Gomez, J. Medina, A. M. Martinez, and Y. Castrillejo, 'The electrochemistry of gadolinium in the eutectic LiCl-KCl on W and Al electrodes' J. Electroanal. Chem., 588, 253-266 (2006) https://doi.org/10.1016/j.jelechem.2005.12.031

Cited by

  1. on W and Zn Electrodes in LiCl–KCl Eutectic: A Comparison Study vol.162, pp.10, 2015, https://doi.org/10.1149/2.0541510jes