• 제목/요약/키워드: Sensor Control

검색결과 6,018건 처리시간 0.032초

오픈 소스 하드웨어 기반의 스마트 센서 네트워크 시스템 구현 (Implementation of Smart Sensor Network System Based on Open Source Hardware)

  • 권오석;김기환
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.123-128
    • /
    • 2017
  • 본 논문에서 오픈 소스 하드웨어인 아두이노를 기반으로 하는 스마트 센서 네트워크 시스템 모델을 제안하고 구현하였다. 제안된 스마트 센서 네트워크 시스템은 센서 및 센서의 값을 처리할 수 있는 오픈 소스 하드웨어 기반인 아두이노 등으로 구성된다. 또한 센서로 부터 측정된 센서값을 활용할 수 있는 제어 장치부에 전송할 통신 모듈도 구성하였다. 제어 장치부에서는 온도, 습도, 광량과 같은 센서 데이터를 메인 프로그램으로 전송하고 메인 프로그램은 데이터를 DB에 저장하거나 특정한 제어 신호의 값을 제어장치 혹은 엑츄에이터에 전송한다. 사용자는 또한 웹을 통해 스마트 센서 네트워크에서 측정된 값을 사용하는 시스템의 정보를 확인하거나 각종 액츄에이터를 원격 제어할 수 있으며 제안 시스템의 상황 인지 및 자율 제어 기능을 통해 스마트한 관리가 가능하다.

2채널 EEG센서를 활용한 운동 심상기반의 어플리케이션 컨트롤 (Motor Imagery based Application Control using 2 Channel EEG Sensor)

  • 이현석;장유빙;정완영
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.257-263
    • /
    • 2016
  • Among several technologies related to human brain, Brain Computer Interface (BCI) system is one of the most notable technologies recently. Conventional BCI for direct communication between human brain and machine are discomfort because normally electroencephalograghy(EEG) signal is measured by using multichannel EEG sensor. In this study, we propose 2-channel EEG sensor-based application control system which is more convenience and low complexity to wear to get EEG signal. EEG sensor module and system algorithm used in this study are developed and designed and one of the BCI methods, Motor Imagery (MI) is implemented in the system. Experiments are consisted of accuracy measurement of MI classification and driving control test. The results show that our simple wearable system has comparable performance with studies using multi-channel EEG sensor-based system, even better performance than other studies.

Development of PSD Sensor Based Range Finder System Using Linearizing Function of Voltage-Distance Conversion

  • Kim, Yu-Chan;Ryoo, Young-Jae;Song, Jeong-Gon;Lee, Ju-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1427-1430
    • /
    • 2005
  • In this paper, the range finder system using a PSD sensor suitable for low-cost localization sensor of a mobile robot. Because the distance-voltage output of a PSD sensor has a non-linear property, the linearizing function is proposed through the experimental characteristics of the sensor. And the characteristics are tested and the distance-voltage data are measured in various colors and materials of object. For a known environment, a mobile robot scans the surroundings using a PSD sensor that can rotate $360^{\circ}$. Finally, the performance and accuracy of the developed system are verified according to the comparison the distance by proposed function with real distance

  • PDF

직교형 손가락 재활로봇기구를 위한 힘센서 개발 및 특성실험 (Development of Force Sensors for Rectangular-Type Finger-Rehabilitation Robot Instruments and Their Characteristic Test)

  • 김갑순
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.127-134
    • /
    • 2012
  • Stroke patients must do the rehabilitation exercise to recover their fingers' function using a rehabilitation robot. But the rehabilitation robots mostly have not the force sensors to control the applied force to each finger. Thus, in this paper, the development of a force sensor for thumb rehabilitation robot and four two-axis force sensors for four-finger rehabilitation robot were developed. The force sensor and four two-axis force sensors could be used to measure the applied force to each finger, and the forces could be used to control the applied forces to each sensor in rehabilitation exercise using in the rehabilitation robot. The developed sensors have non-linearlity error of less than 0.05 %, repeatability error of less than 0.03 %, and the interference error of two-axis force sensor is less than 0.2 %.

구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화 (Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발 (Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting)

  • 김성일;김응보;소상균;최지연;정연호
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

대규모 무선 센서 네트워크에서 트래픽을 고려한 혼잡제어 (A Congestion Control Scheme Considering Traffic in Large-Scale Wireless Sensor Networks)

  • 곽문상;홍영식
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.114-121
    • /
    • 2015
  • 대규모 무선 센서 네트워크는 넓은 지역에 불균일하게 많은 수의 센서노드들이 분포하므로 높은 조밀한 밀집도로 인해 센서노드들이 수집한 데이터들이 서로 유사하거나 중복될 수 있다. 다수의 센서노드에서 싱크노드로 수렴하는 트래픽 특성으로 인해 센서노드들이 수집한 데이터를 싱크노드로 전송할 때 싱크노드 주변의 센서노드들은 싱크노드로부터 멀리 떨어져 있는 센서노드들에 비해 트래픽 양이 많아 혼잡이 발생하여 병목문제가 발생하고, 에너지 소모량도 증가하여 에너지 홀 문제가 발생한다. 본 논문에서는 대규모 무선 센서 네트워크에서 불균일하게 분포되어 있는 센서노드들의 혼잡을 제어하기 위한 트래픽을 고려한 혼잡제어기법를 제안하였다.

Obstacle Avoidance and Lane Recognition for the Directional Control of Unmanned Vehicle

  • Kim, Chang-Man;Moon, Hee-Chang;Kim, Sang-Gyum;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.34.6-34
    • /
    • 2002
  • 1. Introduction 2. System Configuration 2.1 Control System 2.1.1 Longitudinal control 2.1.2 Lateral control 2.2 Sensor System 2.2.1 Photo interrupt 2.2.2 Ultrasonic sensor 2.3 Vision system 2.4 Communication system 2.4.1 Data communication 2.4.2 Image Communication 3. Test and Result 3.1 Vision test 3.2 Ultrasonic sensor test 4. Conculsion. Acknowledgment References.

  • PDF

지능형 속도 추정기를 이용한 유도전동기 속도 제어 (Speed Control of an Induction Motor using Intelligent Speed Estimator)

  • 김낙교;최성대
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권7호
    • /
    • pp.437-442
    • /
    • 2005
  • In order to realize the speed control of an induction motor, the information of the rotor speed is needed. So the speed sensor as an encoder or a pulse generator is used to obtain it. But the use of speed sensor occur the some problems in the control system of an induction motor. To solve the problems, the appropriate speed estimation algorithm is used instead of the speed sensor. Also there is the limitation to improve the speed control performance of an induction motor using the existing speed estimation algorithm. Therefore, in this paper, intelligent speed estimator using Fuzzy-Neural systems as adaptive laws in Model Reference Adaptive System is proposed so as to improve the existing estimation algorithm and ,using the rotor speed estimated by the Proposed estimator, the speed control of an induction motor without speed sensor is performed. The computer simulation and the experiment is executed to prove the performance of the speed control system usinu the proposed speed estimator.

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.