• 제목/요약/키워드: Sensitivity Equation

검색결과 480건 처리시간 0.024초

QUANTITATIVE MONITORING OF TISSUE OXYGENATION BY TIME-RESOLVED SPECTROSCOPY

  • Yamashita, Yutaka;Oda, Motoki;Ohmae, Etsuko;Tsuchiya, Yutaka
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.2101-2101
    • /
    • 2001
  • Near-infrared spectroscopy is now being used in clinical diagnosis as a non-invasive monitor of tissue oxygenation state. However, due to lack of the optical pathlength information within tissues, it is still difficult to quantitate the hemoglobin concentration with present CW techniques. Time-resolved spectroscopy (TRS), which measures temporal profiles of emerging light from tissues, enables to estimate the pathlength distribution within tissues by converting time to distance. Consequently, quantitative measurement of tissue oxygenation is possible by analyzing the data with optical diffusion equation 1) or our Microscopic Beer-Lambert law2). Time-Resolved Spectroscopy System : TRS-1O3) Our TRS-10 system consists of a three-wavelength (759, 797, 833 nm) PLP as pulsed light source, a high speed PMT with high sensitivity and three signal-processing circuits for time-resolved measurement (CFD/TAC, A/D converter and histogram memory). Optical pulse train consisting of 759, 797 and 833nm is generated by PLP at 5㎒ repetition rate and irradiated a sample through a single optical fiber. The diffuse-reflected light from the sample is collected by a bundle fiber and then detected by the PMT for single photon measurement. After being amplified by a following fast amplifier, the electrical signals for each wavelength are picked out by CFD/TAC module. Then, a signal processing circuit integrated the TRS data for each wavelength individually. The simultaneous TRS measurement for three wavelengths achieved without any optical or mechanical switch. Experiment and Results Input and detection fibers of TRS-10 were attached at the human forehead with a fiber separation of 3cm. TRS measurements were continuously performed for about 20 minutes including 2 minutes hyper ventilation. It was observed that the total hemoglobin concentration was decreasing during the hyper ventilation and recovered until 2 minutes after hyper ventilation. On the other hand, the deoxy-hemoglobin concentration began to increase after hyper ventilation and had its peak at around 2 minute later, showing 502 drop from 75% to 60% due to inhibition of breathing by performing hyper ventilation. The results showed that this system might be able to quantitate the concentrations of oxy- and deoxy-hemoglobin in the human brain.

  • PDF

재료에 따른 반도체 압력 센서 배선의 피로 수명 평가에 관한 연구 (A Study of Fatigue Lifetime Evaluation on the Interconnect of Semiconductor Pressure Sensor According to the Various Materials)

  • 심재준;한동섭;한근조;이상석
    • 한국항해항만학회지
    • /
    • 제29권10호
    • /
    • pp.871-876
    • /
    • 2005
  • 기존의 기계적인 센서들보다 높은 민감도와 선형성을 가지는 반도체 압력 센서들은 크기가 작고 일괄공정에 의해 제작될 수 있는 반도체 공정 기술로 제작되므로 다양한 산업에서 적용되고 있다. 하지만 열과 반복적인 외부 하중은 센서의 수명에 치명적인 영향을 미치고 있고, 특히 외부에서 가해지는 열은 센서를 구성하는 구조물보다 신호를 전달하는 금속 배선의 피로 수명에 지대한 영향을 미치고 있으므로 이에 대한 영향성을 분석할 수 있는 프로세스를 확립하고, 이후 다양한 재료의 반복적인 열하중에 대한 피로 수명을 Manson & Coffin식에 따라서 평가하였다. 금속 배선의 밑단에서 피로수명이 가장 낮고, 굽힘하중은 피로 수명보다는 응력분포에 큰 영향을 미치고 있다.

수직벽 화재 자연대류에 의한 난류 경계층 열유동 특성 해석 (ANALYSIS OF TURBULENT BOUNDARY LAYER OF NATURAL CONVECTION CAUSED BY FIRE ALONG VERTICAL WALL)

  • 장용준;김진호;류지민
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.1-10
    • /
    • 2016
  • The analysis of characteristics of turbulent flow and thermal boundary layer for natural convection caused by fire along vertical wall is performed. The 4m-high vertical copper plate is heated and kept at a uniform surface temperature of $60^{\circ}C$ and the surrounding fluid (air) is kept at $16.5^{\circ}C$. The flow and temperature is solved by large eddy simulation(LES) of FDS code(Ver.6), in which the viscous-sublayer flow is calculated by Werner-Wengle wall function. The whole analyzed domain is assumed as turbulent region to apply wall function even through the laminar flow is transient to the turbulent flow between $10^9$<$Gr_z$<$10^{10}$ in experiments. The various grids from $7{\times}7{\times}128$ to $18{\times}18{\times}128$ are applied to investigate the sensitivity of wall function to $x^+$ value in LES simulation. The mean velocity and temperature profiles in the turbulent boundary layer are compared with experimental data by Tsuji & Nagano and the results from other LES simulation in which the viscous-sublayer flow is directly solved with many grids. The relationship between heat transfer rate($Nu_z$) and $Gr_zPr$ is investigated and calculated heat transfer rates are compared with theoretical equation and experimental data.

탄소나노튜브 필름을 이용한 투명 압저항체의 제작 및 특성 연구 (Fabrication and Characterization of Transparent Piezoresistors Using Carbon Nanotube Film)

  • 이강원;이정아;이광철;이승섭
    • 대한기계학회논문집A
    • /
    • 제34권12호
    • /
    • pp.1857-1863
    • /
    • 2010
  • 본 논문에서는 탄소나노튜브 필름을 이용한 투명 압저항체의 제작 및 특성 연구를 수행하였다. 진공필터 방식으로 제작된 다양한 투과도를 가지는 탄소나노튜브 필름은 금층이 증착된 실리콘 기판위에서 사진식각 공정을 통해 패터닝이 된 후, 금층과 실리콘 기판의 약한 접착력으로 인해 실리콘 러버인 poly-dimethysiloxane (PDMS) 로 전사된다. 탄소나노튜브 필름의 압저항 특성을 분석하기 위해, 얇은 PDMS 멤브레인의 처짐에 대한 탄소나노튜브 필름의 저항 변화를 측정하여 10-20 의 개이지 팩터를 얻었으며, 인가 압력에 대한 저항 변화 실험을 수행하였다. 본 실험을 통하여 탄소나노튜브 필름은 폴리머 멤스의 다양한 응용분야에 투명한 압저항체로 사용될 수 있을 것으로 판단한다.

이동강우의 공간적 분포형이 지표면유출에 미치는 영향 (Effect of Rainfall Distribution Types of Moving Rainstorms on Surface Runoff)

  • 전민우;이효상;전종기
    • 한국방재학회 논문집
    • /
    • 제7권5호
    • /
    • pp.167-178
    • /
    • 2007
  • 강우분포형에 따라 이동강우가 지표면유출에 미치는 영향을 분석하였으며, 지배방정식으로 운동파방정식을 적용하였다. 이동강우의 강우분포형은 균등분포형, 전진형, 지연형, 중앙집중형을 사용하였으며, 이동강우에 상응하는 정지강우의 경우와 유출을 비교하였다. 본 연구에 적용한 강우의 이동속도는 0.125-2.0m/s이며, 이동방향은 지표면의 상류와 하류방향을 고려하였다. 이동강우의 강우분포형과 이동강우의 특성은 지표면 유출수문곡선의 모양과 첨두유량에 현저하게 영향을 미치는 것으로 나타났다. 모든 강우분포형에서 하류방향의 이동강우에 의하여 가장 큰 첨두유량이 발생함을 알 수 있으며, 강우분포형에 의한 유출량 민감도는 강우이동 속도가 증가함에 따라 감소하고 있다. 강우이동속도가 빠르면 첨두시간이 짧아지고 수문곡선의 모양이 급격히 얇아진다.

태양활동 긴 주기와 기후변화의 연관성 분석 (Long Term Variability of the Sun and Climate Change)

  • 조일현;장헌영
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권4호
    • /
    • pp.395-404
    • /
    • 2008
  • 태양활동프록시(proxies)와 지구연평균 기온아노말리 시계열을 이용하여 기후변화에서 태양활동신호를 찾아보았다. 이를 위해 Lomb & Scargle의 피어리드그램(Periodgram)을 이용하여 태양활동프록시와 기온아노말리 시계열을 주기분석하였다. 또한 EMD(Empirical Mode Decomposition)과 MODWR MRA(Maxial Overlap Discrete Wavelet Transform Multi Resolution Analysis)를 적용하여 두 시계열을 성분분해하고 이들 중 비슷한 주기의 특성을 보이는 성분을 비교하였다. 태양활동프록시는 짧의 주기의 파워가 긴 주기의 파워에 비해서 큰 반면 기온아노말리는 긴 주기에서 더 큰 파워를 보였다 EMD에 의한 성분분해 결과는 약40년보다 긴 주기성을 갖는 성분을 분해해 낼 수 없었지만 잔차 성분은 비교할 수 있었다. MRA에 의한 성분분해를 통해 지구연평균 기온아노말리 시계열에서 태양활동의 변화에 의한 신호를 찾아내었다. 1960년부터 2007년까지 기온상승에 대한 태양의 기여도는 39%로 계산되었다. 기후민감성은 출력신호의 진폭에만 관계하여 기후시스템이 간단한 2계미분방정식으로 근사될 수 있는 가능성에 대해 토의하였다.

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • 제38권3호
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.

이스트 프로테옴에 대한 단백질-단백질 네트워크의 생물학적 및 물리학적 정보인식 : 라플라스 행렬에 대한 고유치와 섭동분석 (Identifying the biological and physical essence of protein-protein network for yeast proteome : Eigenvalue and perturbation analysis of Laplacian matrix)

  • Chang, Ik-Soo;Cheon, Moo-Kyung;Moon, Eun-Joung;Kim, Choong-Rak
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.265-271
    • /
    • 2004
  • The interaction network of protein -protein plays an important role to understand the various biological functions of cells. Currently, the high -throughput experimental techniques (two -dimensional gel electrophoresis, mass spectroscopy, yeast two -hybrid assay) provide us with the vast amount of data for protein-protein interaction at the proteome scale. In order to recognize the role of each protein in their network, the efficient bioinformatical and computational analysis methods are required. We propose a systematic and mathematical method which can analyze the protein -protein interaction network rigorously and enable us to capture the biological and physical essence of a topological character and stability of protein -protein network, and sensitivity of each protein along the biological pathway of their network. We set up a Laplacian matrix of spectral graph theory based on the protein-protein network of yeast proteome, and perform an eigenvalue analysis and apply a perturbation method on a Laplacian matrix, which result in recognizing the center of protein cluster, the identity of hub proteins around it and their relative sensitivities. Identifying the topology of protein -protein network via a Laplacian matrix, we can recognize the important relation between the biological pathway of yeast proteome and the formalism of master equation. The results of our systematic and mathematical analysis agree well with the experimental findings of yeast proteome. The biological function and meaning of each protein cluster can be explained easily. Our rigorous analysis method is robust for understanding various kinds of networks whether they are biological, social, economical...etc

  • PDF

고유진동수와 모드의 민감도를 계산하기 위한 대수적 방법 (Algebraic Method for Computation of Natural Frequency and Mode Shape Sensitivities)

  • 정길호;김동옥;이종원;이인원
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.707-718
    • /
    • 1997
  • This paper presents an efficient numerical method for the computation of eigenpair derivatives for a real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has a very simple algorithm and gives an exact solution. Furthermore, it saves computer sotrage and CPU time. The algorithm preserves not only the symmetricity but also the band width of the matrices, allowing efficient computer storage and solution techniques. Results from the proposed method for calculating the eigenpair derivatives are compared with those from Rudisill and Chu's method and Nelson's method which is known efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, lying adjacent to the multiplicity of multiple natural frequency distinct eigenvalues, which appear when design parameter varies. A cantilever beam is used to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies. Results form the proposed method for calculating the eigenpair derivatives are compared with those from Dailey's method(an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is presented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

직교격자 기반 수치기법을 이용한 부가저항 해석 (Analysis of Added Resistance using a Cartesian-Grid-based Computational Method)

  • 양경규;이재훈;남보우;김용환
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.